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NEURAL MODELING CASE STUDIES AT BIOPHYSICAL,  

MACHINE LEARNING, AND AUTOMATION LEVELS 

 

Tyler J. Banks 

Dr. Satish S. Nair, Dissertation Supervisor 

ABSTRACT 

This dissertation reports three case studies using machine learning, biophysical, and 

automation frameworks to study neural engineering challenges. The first study utilized 

machine learning with a clinical dataset to predict the risk of future opioid use disorder 

(OUD).  The model achieved a high level of predictive accuracy and highlighted the most 

impactful variables that predicted the risk. The second study implemented recent tract-

tracing data predicting the existence of a motif that generated the theta rhythm, similar to 

that in the hippocampus in the amygdala. This was done via the development of a 

biophysical model of the rodent amygdala that demonstrated how the theta rhythm could 

be engendered by an external theta-rhythmic inhibitory projection from the ventral 

pallidum and substantia innominata. The third study developed an automation pipeline 

using biophysical and machine learning schemes, to assist in the development of 

biophysical models of neurons. The approach implemented recent insights developed in 

our group related to currents being grouped into modules based on their 

neurocomputational signatures. 
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CHAPTER 1 

INTRODUCTION AND OBJECTIVES 

 

 

BACKGROUND AND MOTIVATION 

This dissertation seeks to contribute to a deeper understanding of brain circuitry and its 

relation to behavior. A tight relationship exists between architectures in neuroscience and 

machine learning, which is not well understood presently. Since the studies use different 

types of software and platforms for modeling as well as analyses, software automation was 

found to be an important enabler for this research. It is only through such a combination 

that progress in neuroscience will be possible. These approaches provide varying levels of 

informed insight into fundamental principles of the brain.  

Beyond the dissertation we expect that by having a generalized understanding of these 

model architectures, hybrid models will be feasible.  

CHAPTER OVERVIEW 

Chapter 2 – Existing predictive models of opioid use disorder (OUD) may change as the 

rate of opioid prescribing decreases. Using Veterans Administration’s EHR data, we 

developed machine-learning predictive models of new OUD diagnoses and ranked the 

importance of patient features based on their ability to predict a new OUD diagnosis in 

2000–2012 and 2013–2021. Using patient characteristics, the three separate machine 

learning techniques were comparable in predicting OUD, achieving an accuracy of >80%. 

Using the random forest classifier, opioid prescription features such as early refills and 
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length of prescription consistently ranked among the top five factors that predict new OUD. 

Younger age was positively associated with new OUD, and older age inversely associated 

with new OUD. Age stratification revealed prior substance abuse and alcohol dependency 

as more impactful in predicting OUD for younger patients. There was no significant 

difference in the set of factors associated with new OUD in 2000–2012 compared to 2013–

2021. Characteristics of opioid prescriptions are the most impactful variables that predict 

new OUD both before and after the peak in opioid prescribing rates. Predictive models 

should be tailored to age groups. Further research is warranted to determine if machine 

learning models perform better when tailored to other patient subgroups. 

Chapter 3 – We develop a biologically realistic model of the Basolateral Amygdala (BLA) 

to show that by severing either the cholinergic or the GABAergic Basal Forebrain (BF) 

input to the BLA theta power decreases in the BLA, whereas removing the rhythmic 

GABAergic input together with either the non-rhythmic cholinergic or the 

thalamic/cortical input leads to complete cessation of theta rhythms in the BLA. 

Chapter 4 – Automating the process of developing biophysical conductance-based 

neuronal models involves the selection of numerous interacting parameters, making the 

overall process computationally intensive, complex, and often intractable. A recently 

reported insight into the possible grouping of currents into distinct biophysical modules 

associated with specific neurocomputational properties also simplifies the process of 

automated selection of parameters. We show how our proposed grouping of currents into 

modules facilitates the development of a pipeline that automates the biophysical modeling 

of single neurons that exhibit multiple neurocomputational properties. 
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Chapter 2 - Predicting Opioid Use Disorder before and after the Opioid 

Prescribing Peak in the United States: A Machine Learning Tool using 

Electronic Healthcare Records 

Tyler J. Banks1, Tung D. Nguyen1, Jeffrey K. Uhlmann1, Satish S. Nair1, Jeffrey F. 

Scherrer2 
1Electrical Engineering & Computer Science, University of Missouri, Columbia MO, 

USA 
2 Saint Louis University School of Medicine, Medicine, Saint Louis, MO, USA 

Published in Health Informatics Journal. 2023;29(2). doi:10.1177/14604582231168826 

 

ABSTRACT 

Existing predictive models of opioid use disorder (OUD) may change as the rate of 

opioid prescribing decreases. Using Veterans Affair’s EHR data, we developed machine-

learning predictive models of new OUD diagnoses and ranked the importance of patient 

features based on their ability to predict a new OUD diagnosis in 2000-2012 and 2013-

2021. Using patient characteristics, the three separate machine learning techniques were 

comparable in predicting OUD, achieving an accuracy of >80%. Using the random forest 

classifier, opioid prescription features such as early refills and length of prescription 

consistently ranked among the top five factors that predict new OUD. Younger age was 

positively associated with new OUD, and older age inversely associated with new OUD. 

Age stratification revealed prior substance abuse and alcohol dependency as more 

impactful in predicting OUD for younger patients. There was no significant difference in 

the set of factors associated with new OUD in 2000-2012 compared to 2013-2021. 

Characteristics of opioid prescriptions are the most impactful variables that predict new 

OUD both before and after the peak in opioid prescribing rates. Predictive models should 

https://doi.org/10.1177/14604582231168826
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be tailored to age groups. Further research is warranted to determine if machine learning 

models perform better when tailored to other patient subgroups. 

 

INTRODUCTION 

Opioid prescription rates and doses have declined since 2012 [1; 2]. However, a large 

number of patients remain on long-term opioid therapy, which increases the risk for 

opioid use/dependence (OUD). One out of four patients receiving long-term opioid 

therapy in primary care have OUD [3] and 4.7% of all pain patients prescribed an opioid 

will develop prescription OUD [4]. About 6 to 7 million persons in the United States 

suffer from OUD, not limited to prescription opioids [5] Among the commercially 

insured, the annual rate of OUD is approximately 0.4% [6].   

 

Screening tools and urine drug screens (UDS) can be used to identify patients with OUD.  

[7; 8]. However, these tools are not perfect and patients who are seeking opioids can 

provide inaccurate reports of their opioid use and UDS screens miss many positive cases 

when obtained without a visual witness [9]. Thus, the likelihood of a significant number 

of patients with undetected OUD is high. Left undetected and untreated, patients have an 

increased risk for opioid overdose and other adverse outcomes.  

 

Machine learning using electronic health record (EHR) data has the potential to predict 

OUD and accurate models can be incorporated into the EHRs to aid OUD detection in the 

clinical setting. The models that have used machine learning have typically used either 

EHR data or data related to medical claims. A study by Che et al. [10] used a large 
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sample of medical records and generated an AUC=0.80 in a model predicting OUD. 

Medical claims data have a comparatively lesser level of individual patient detail but 

have been successfully used to develop machine learning models to predict opioid use 

disorder. Commercial medical claims data have been utilized to develop a machine 

learning algorithm to predict opioid use disorder, with a c-statistic of 0.96 [11] and major 

contributing factors included duration of opioid use, overlapping opioid prescriptions, 

benzodiazepine prescriptions, and specific pain conditions. A recent study utilized the 

Canadian administrative health records billing data to achieve a balanced accuracy score 

of 86%, and found opioid-related poisoning, sedative hypnotic-related disorders, and 

polysubstance-related disorders to be predictive of OUD [12]. Their billing data did not 

include prescription/refill variables. EHR data contains more patient level variables (e.g., 

pain scores, laboratory results), and may out-perform models developed using medical 

claims data.  

 

We are aware of two existing studies using EHR data in a machine learning model of new 

OUD. The first used Veterans Health Affairs (VHA) data from 829,827 patients with 

encounters from 2006 to 2016 [13]. Using 10,292 inpatient and 13,512 outpatient 

diagnoses as independent variables, this study developed a model that predicted cross-

validated opioid use well for both inpatient (AUC = 0.822), and outpatient (AUC = 0.817) 

cases [13]. Similarly, EHR measures of laboratory values, pharmacy data and clinical 

characteristics from 716,533 patients were used to develop a machine learning classifier 

which produced an excellent predictive value for substance use disorder, not specific to 

OUD, with an AUC of 0.92 [13].  Dong and colleagues [14] used Cerner inpatient and 
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outpatient EHR records between 2008 to 2017 in a deep-learning model that had 

excellent precision in predicting OUD (AUC=0.937).  

 

Because the literature is sparse and opioid prescribing has declined over the past decade, 

further research is needed to determine if the same set of factors predict OUD in the time 

period when opioid prescribing was increasing (2000-2012) compared to when it was 

decreasing (2013-2021). Because greater exposure to opioids should result in a higher 

rate of OUD, we expect a stronger association between prescription opioid characteristics 

and OUD from 2000-2012.  In contrast, as access to opioids became more restricted, 

factors such as depression and past substance use disorder diagnosis which are associated 

with drug seeking and more severe and chronic pain, may be stronger predictors of OUD 

between 2013 and 2021. In addition, studies are needed that report on the predictive 

importance of individual variables. We used VHA EHR data to develop a predictive 

machine learning model of diagnosed OUD and determined if the set of important 

predictors of OUD differed between patients receiving opioids from 2000-2012 compared 

to those treated from 2013-2021. We used a pre-processing algorithm to re-structure the 

large datasets prior to developing the machine learning models. Second, we stratified 

analyses by three age groups. Third, we determined the relative importance of each 

predictor variable in predicting OUD.   
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METHODS  

Variables were created from VHA administrative EHR data. Because data was de-

identified, this work was reviewed and approved by the VA and academic affiliates IRBs 

as expedited. This data includes International Classification of Disease, 9th and 10th 

Revisions, Clinical Modification (ICD-9-CM and ICD-10-CM) diagnostic codes, 

laboratory results, prescription records, vital signs, and demographic information (Table 

1). Detailed variable definitions are shown in the appendix, e-table 1. 

 

Eligible patients had to be free of HIV and cancer pain, be regular VHA users (defined as 

having at least two annual visits) and starting a new period of prescription opioid use. 

New opioid use was defined by excluding patients with opioid fills for two years prior to 

1/1/2002. Patients must have been without diagnosed OUD prior to 1/1/2002 for the pre-

2012 cohort and for two years prior to 1/1/2015 for the post-2012 cohort. This allowed us 

to model risk factors for new onset OUD following the start of a new period of 

prescription opioid use. The 2-year look-back period has been shown to improve 

classification of new medication users and reduce the number of ineligible subjects [15]. 

Patients with missing demographic data were excluded. In patients with OUD, an 

individual’s conditions that occurred after OUD diagnosis were censored. Figure 1 

illustrates the sampling approach for the two time periods.  
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Table 1: Variables used for the models, grouped into three clusters. Boxed variable is the 

predicted output. 

 

 

 

VARIABLE DESCRIPTION 

                     Demographics variables (5; scrssn only for index) 

scrssn Scrambled Social Security number for index 

is_male 1=Male, 0=Female 

age Age of patient 

is_white Race, 1=Yes, 0=No 

is_married Currently married, 1=Yes, 0=No 

va_ins Has and uses VA insurance, 1=Yes, 0=No 
_________________________________________________________ ___________________________________________________________________________________________________________________________________________ 

                    Patient-condition variables (24 + 1 output that is boxed below) 

adhdb4depend Had ADHD before opioid dependence 

adjustmentreactb4depend Adjustment reaction before opioid dependence 

alcoholb4depend Alcohol use before opioid dependence 

amphetamineb4depend Amphetamine use/dependence before opioid dependence 

anxietyb4depend Anxiety before opioid dependence 

arthritisb4depend Arthropathies before opioid dependence 

backpainb4depend Had back pain before opioid dependence  

bipolarb4depend Had bipolar disorder before opioid dependence 

cannabisb4depend Used cannabis before opioid dependence 

cerebrovascularb4depend Cerebrovascular disease before opioid dependence 

cocaineb4depend Cocaine use/dependence before opioid dependence 

depressionb4depend Depression before opioid dependence 

hallucinogenb4depend Hallucinogen use/dependence before opioid dependence 

musculoskelpainb4depend Musculoskeletal pain before opioid dependence 

neuropathyb4depend Neuropathy before opioid dependence 

obesityb4depend Obese before opioid dependence 

othersubstb4depend Other substance use/dependence before opioid dependence 

overweightb4depend Overweight before opioid dependence 

schizophreniab4depend Schizophrenia before opioid dependence 

smokingb4depend Smoker before opioid dependence 

ptsdb4depend PTSD before opioid dependence 

personalitydisb4depend Personality disorder before opioid dependence 

tbib4depend Traumatic Brain Injury before opioid dependence 

unspecifieddrugb4depend Unspecified drug use/dependence before opioid dependence 

opioid_dep Target indicator, OUD, op_dep and/or op_use; MODEL OUTPUT 
_________________________________________________________ ___________________________________________________________________________________________________________________________________________ 

                    Prescription-fill variables (6) 

total_op_days_early Total number of days patient was early in picking up prescriptions 

before last rx end date 

total_op_days_late Total number of days patient was late in picking up prescription after 

last rx end date 

max_op_days_early Maximum days early for prescription refill 

max_morph_dose Maximum morphine equivalent dosage use 

op_use_length Opioid use length in days 

op_dose_x_change Change multiplier from beginning of opioid use to end (before 

possible dependence) 
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Cohort Eligibility 

Dataset-1 comprised of 602,394 patients from 2000-2012, with 24,117 patients diagnosed 

with OUD. Age groups in this cohort were 18-34 years (n=40,480), 35-64 years 

(n=408,871), and >64 years (n=153,043).  

 

Figure 1: Eligibility criteria for Veterans Heath Administration patient population. Each 

dataset was subject to the selection criteria outlined. For each dataset and at each stage, 

patients were removed, and the counts were noted.  

Dataset-2 had 141,734 patients from 2013-2021, with 4,221 patients diagnosed with 

OUD. Also, the 2013-2021 dataset did not include new patients enrolled during 2013-
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2021. Based on the selection criteria (figure 1), this dataset shared 84,603 patients from 

dataset-1 and 57,131 new patients from the entire dataset. For dataset 2, the sample size 

by age group was 18-34 years (n=387), 35-64 years (n= 93,515), and >64 years 

(n=47,835). These age groups were selected because risk for opioid use disorder 

decreases with age across similar age groups [16]. 

 

Variable definitions 

Opioid use, dose, and dose change 

New opioid prescriptions included the following opioids, in immediate and long-term 

release formulations at any dose and duration: codeine, fentanyl, hydrocodone, 

hydromorphone, levorphanol, meperidine, morphine, oxycodone, oxymorphone, and 

pentazocine. Morphine milligram equivalent (MME) dose was computed with State of 

Washington Agency Medical Directors Group website opioid calculator 

(http://agencymeddirectors.wa.gov/mobile.html). We used the maximum MME received 

as a predictor variable. Continuous usage in days was defined as the use from the original 

opioid fill to the first occurrence of a gap in fills greater than 30 days or study end date. 

Dosage change is defined as the final opioid dosage divided by first opioid dosage. 

Methods to define dose and duration of prescription opioid use in this cohort have been 

reported previously [17].  

 

Predictor variables 

Predictor variable domains were selected because they have been associated with OUD 

[18; 19] Demographics included sex, age (at the beginning of the study Jan 1, 2000, and 

http://agencymeddirectors.wa.gov/mobile.html
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Jan 1, 2013, respectively, for dataset-1 and dataset-2), race, marital status, and insurance. 

Insurance was defined as a binary variable (VHA vs. other types of health insurance). We 

used ICD-9-CM and ICD-10-CM codes to define psychiatric conditions which included: 

depression, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder 

(PTSD), bipolar disorder, schizophrenia, personality disorder, adjustment reaction, and 

any anxiety disorder which was the presence of any of the following conditions: panic 

disorder, generalized anxiety disorder, social phobia, obsessive compulsive disorder or 

any other anxiety disorder not specified. We modeled alcohol use disorder, any non-

opioid drug use disorder (including amphetamines, cannabis, hallucinogens, or 

unspecified), and nicotine dependence or a history of smoking. Physical comorbidities 

included overweight, and obesity defined by ICD-9-CM or ICD-10-CM code or body 

mass index. Painful conditions included arthritis, traumatic brain injury, neuropathy, 

musculoskeletal pain, and back pain. These conditions were created by combining groups 

of ICD-9-CM or ICD-10-CM codes from over 900 conditions for which an opioid may be 

prescribed [20; 21].   

 

Prescription characteristics included the total number of days early a patient refilled their 

prescription, duration of opioid use in days, the maximum number of days a patient 

refilled early considering all refills, and the total number of days a prescription was 

refilled late. For a more consistent comparison of variables between decades, we scaled 

summed variables (such as the total number of days early an individual was to refill their 

opioid prescription) by the individual’s overall duration of opioid use.  
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All covariates had to occur prior to new OUD. In total, thirty-five possible predictor 

variables were selected. Table 1 lists the variables and their definitions. 

 

Outcome variable 

OUD diagnosis (defined by ICD-9 and ICD-10 codes) was defined by diagnoses for 

opioid abuse only (ICD-9 305.5 and ICD-10 F11.10), or opioid dependence only (ICD-9 

304.0 or 304.7 and ICD-10 F11.20 or F19.20) or both. 

 

Improved data pre-processing.  

In machine learning techniques that use large datasets, the issue of pre-processing data 

becomes significant. This is because databases typically have a very large number of 

dissimilar variables, including of multi-modal types as in patient health data. To address 

this pre-processing challenge, an algorithm was recently proposed to normalize the 

variables and was found to enhance performance compared to existing techniques such as 

Principal Components Analysis (PCA) and MinMax [22-24]. This algorithm was used to 

normalize the variables for the datasets in this study prior to the development of the 

different machine learning models. Specifically, the algorithm uses a unit-consistent (UC) 

matrix completion (MC) approach to rigorously estimate unknown quantities based on 

the information available. The UC matrix completion approach presumes the existence of 

unknown units on relevant state variables and then estimates unknown values in a manner 

that preserves those units, i.e., changing of units will produce the same UC completion 

but in the new units [22-24]. Briefly, from an original matrix A of patient data, the UC-

transformed matrix TA=DAE, for positive diagonal matrices D and E, is uniquely 
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determined with the product of known elements in each row or column equal to 1. The 

completed matrix, A', is then obtained by filling the unknown entries of TA with 1, i.e., 

preserving the product of elements in each row and column, and transforming back by 

pre-multiplying by inverse (D) and post-multiplying by inverse (E). This is the matrix 

completion (MC) process. 

For our application, UC presumes that information contained in patient evaluations is 

implicitly derived from a set of incommensurate variables defining the state of a system, 

i.e., the health state of each patient. The UC algorithm determines imputed values in a 

way that provably ensures that the new values are consistent with the unknown units. For 

example, if the measurement process were to scale some subset of the units by arbitrary 

values, the imputed values from the UC algorithm will be the same up to the scaled 

values. This natural constraint is not preserved by other methods, e.g., that minimize an 

arbitrary norm such as squared error. This UC guarantee ensures that prediction results 

are consistent and robust in the sense that they are not sensitive to arbitrary choices of 

units applied during acquisition of patient data.  

Experiments were carried out to test the robustness of this approach by removing a 

random set of variables for each training run, and comparing results with those from 

MinMax, PCA and UC-MC techniques. Figure 2 shows  how the method exhibits 

smoother results, which shows robust exploitation of information as it becomes available. 

More importantly, it plateaus at a level above that of PCA, which indicates that UC-MC 

can extract more of the available information. Furthermore, the relative score of UC-MC 

after removing one variable was consistently higher and displays how it maintains robust 

prediction compared to the other two methods. Testing for the significance of results 
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given differing pre-processing methods, we found that the results with UC-MC were 

significantly better than those with PCA (p<0.001). However, no significance was 

found for the UC-MC vs MinMax case (p~0.25) although the results remained 

consistently better (Figure 2). In summary, the UC-MC method was used consistently to 

pre-process the datasets including imputing values for three variables. 

 

Figure 2: Relative AUC score using a subset of dataset-1 on the deep neural network 

classifier. Features were randomly removed sequentially from a subset of dataset-1 that 

consisted of 100,000 patients (remove 1 feature, remove 2 features, etc. – x-axis) and 

performance of three preprocessing methods were compared. The UC-MC approach 

showed consistently better performance compared to PCA and MinMax schemes 

(p<0.001 and p~0.25 respectively). 
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Machine Learning Techniques  

Before training each model, variables were scaled between 0 and 1 using the UC-MC 

scaler. Datasets were first split (80:20; by patient) for training/validation and holdout. Of 

the training/validation data, K-fold cross validation of models (K=5) was used to 

systematically repeat the train and validation split procedure (70:30; by patient) five 

times to obtain a more accurate representation of the model’s ability to learn the dataset. 

The holdout dataset, that the model had not seen, was then used to judge the performance 

of the trained network. Area Under the Curve (AUC) was the primary metric chosen for 

quantifying the accuracy of the models. Logistic regression provided a baseline score for 

comparison with the deep neural network and random forest classifiers which are popular 

models with deep neural networks typically providing higher accuracy. Of these, the 

random forest classifier has an inbuilt feature to perform sensitivity analysis while the 

others require user-developed code for sensitivity analyses. All OUD cases were used 

during this process and a randomly selected subset of non-OUD were used to keep 

classification classes balanced such that the number of dependent patients matched the 

number of non-dependent patients to not bias the algorithm in any direction. Similarly, 

classification weighting is a viable and available alternative to achieve similar results. 

 

Cross-tabulation tables, mean and standard deviation for all covariates were calculated 

for correctly classified, false positive and false negative entries in the datasets. To 

improve model results, principal component analysis (PCA) was computed which 

revealed 31 out of 35 variables were necessary to explain 95% of the data. The use of 

PCA improved the deep neural network results above the MinMax scaler but UC-MC 
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outperformed PCA, by an average of 0.025 AUC. We also explored the use of a 

convolutional input layer in the deep neural network model but found no difference. 

 

Statistical Tools. Statistical significance of variables across subgroups were determined 

using the StatsModels python package. Significance (p-value) was computed using a 

generalized linear model with a binomial distribution [25] or t-test as appropriate (e.g., 

for the same patient in some tables) and is indicated with the specific test. The logistic 

regression model was implemented using ScikitLearn. The solver was lbfgs with a max 

iteration of 200 and a square error loss function. For our deep neural network model, a 

four-layer network (input, dense relu, dense relu, sigmoid output) was chosen. Optimal 

hyperparameter tuning was provided by ScikitLearn’s GridSearchCV. The random forest 

model utilized ScikitLearn and consisted of 100 estimators with a max depth of 40.  

 

Software tools developed for data retrieval, processing, and analyses, are available upon 

request.
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RESULTS  

The overall characteristics of datasets 1 and 2, including the patient variables were 

determined and are listed first, followed by results from the machine learning models.  

 

Characteristics of patient data across two time periods 2002-2012 and 2013-2021 

Among the 602,394 patients with clinic encounters between 2000 and 2012, 24,117 had 

OUD and 578,277 were non-OUD. Of the patients with OUD, the mean age was 45.30 

years (range 18 to 80), with 91.93% (22,127) being male and 8.1% (1945) female. Of 

these, 40.01% (9,675) had prior non-opioid substance use disorder recorded (compared to 

7.79% in non-opioid dependent patients), and 75.26% (18,150) had reported depression 

before OUD (compared to 47.22% in non-OUD patients). Among the 141,734 patients 

with clinic encounters between 2013 and 2021, 4,221 had OUD and 137,513 were non-

OUD. Of the OUD patients, the mean age was 57.25 years (range 31 to 80), with 89.5% 

(3,776) male and 10.5% (445) female. Of these 40.42% (1,706) had prior drug use 

recorded (compared to 12.2% in non-OUD patients), and 84.32% (3,559) had reported 

depression before OUD (compared to 65.42% in non-opioid dependent patients). A full 

report of overall patient characteristics can be found in Table 2.  

Table 2.  Patient characteristics, overall and by time period. 

 Overall/total 

sample 

(n=659,525) 

Time period 1  

2000—2012 

(n=602,394) 

Time period 2 

2013-2021 

(n=141,734) 

Age     

  18-34 years 4.78% (n=31,551) 6.72% (n=40,480) 0.27% n=387 

  35-64 years 65.13% 

(n=429,576) 

67.87% 

(n=408,871) 

65.98% n=93,513 

  65+ years 30.08% 

(n=198,398) 

25.41% 

(n=153,043) 

33.75% n=47,834 
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Male gender 91.68% 

(n=604,660) 

91.9% (n=553,610) 88.41% 

(n=125,313) 

Race    

  White 58.23% 

(n=384,023) 

58.82% 

(n=354,312) 

55.22% (n=78,260) 

  Other 17.26% 

(n=113,832) 

17.28% 

(n=104,081) 

19.9% (n=28,199) 

  Not reported 24.51% 

(n=161,670) 

23.9% (n=144,001) 24.89% (n=35,275) 

Currently married 47.89% 

(n=315,829) 

48.2% (n=290,332) 42.09% (n=59,652) 

  Not reported 3.56% (n=23,462) 3.41% (n=20,553) 5.39% (n=7,640) 

Only VA insurance 86.88% 

(n=572,965) 

86.17% 

(n=519,091) 

95.44% 

(n=135,273) 

Comorbidities prior to opioid use/dependence 

Pain diagnoses    

   Arthropathies 85.00% 

(n=560,571) 

84.13% 

(n=506,824) 

92.96% 

(n=131,759) 

   Back pain 71.64% 

(n=472,482) 

69.65% 

(n=419,547) 

87.21% 

(n=123,605) 

   Musculoskeletal 69.04% 

(n=455,354) 

66.73% 

(n=401,978) 

85.57% 

(n=121,278) 

   Neuropathic 38.36% 

(n=252,970) 

36.04% 

(n=217,101) 

51.85% (n=73,492) 

Psychiatric 

disorders 

   

ADHD 0.99% (n=6,552) 0.8% (n=4,819) 2.05% (n=2,907) 

Anxiety disorder 39.68% 

(n=261,709) 

37.18% 

(n=223,960) 

56.42% (n=79,964) 

Adjustment disorder 19.85% 

(n=130,895) 

17.71% 

(n=106,703) 

32.44% (n=45,978) 

PTSD 25.88% 

(n=170,678) 

24.06% 

(n=144,928) 

40.32% (n=57,149) 

Bipolar disorder 14.96% (n=98,650) 13.22% (n=79,616) 25.55% (n=36,208) 

Schizophrenia 8.13% (n=53,608) 7.92% (n=47,683) 10.44% (n=14,798) 

Personality disorder 9.07% (n=59,809) 8.05% (n=48,511) 15.74% (n=22,314) 

Depression 50.25% 

(n=331,385) 

48.34% 

(n=291,194) 

65.98% (n=93,523) 

Alcohol use disorder 24.34% 

(n=160,529) 

23.3% (n=140,341) 31.37% (n=44,467) 

Amphetamine use 

disorder 

1.45% (n=9,571) 1.25% (n=7,507) 2.54% (n=3,598) 

Cannabis use 

disorder 

7.3% (n=48,152) 6.53% (n=39,366) 12.25% (n=17,358) 

Cocaine use disorder 6.77% (n=44,644) 6.54% (n=39,403) 9.5% (n=13,459) 
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Hallucinogen use 

disorder 

0.16% (n=1,076) 0.15% (n=908) 0.25% (n=353) 

Unspecified drug use 

disorder 

3.79% (n=25,013) 3.7% (n=22,287) 5.03% (n=7,130) 

Other drug use 

disorder 

9.43% (n=62,179) 9.08% (n=54,723) 12.99% (n=18,413) 

Nicotine 

dependence/smoking 

46.12% 

(n=304,143) 

44.74% 

(n=269,538) 

55.59% (n=78,797) 

Physical disorders 

Cerebrovascular 

disease 

22.75% 

(n=150,010) 

21.84% 

(n=131,545) 

23.05% (n=32,675) 

Overweight 7.29% (n=48,065) 5.3% (n=31,909) 16.26% (n=23,039) 

Obesity 43.05% 

(n=283,954) 

40.93% 

(n=246,571) 

58.02% (n=82,239) 

Traumatic brain 

injury 

1.54% (n=10,138) 1.15% (n=6,956) 3.16% (n=4,483) 

Prescription opioid characteristics [Mean (±SD)] 

Total days early fill 69.79 (±295.51) 84.26 (±342.16) 74.90 (±317.65) 

Maximum days early 

fill 

7.87 (±12.18) 8.76 (±12.93) 7.33 (±11.12) 

Total days late fill 842.22 (±1,064.89) 1,024.24 

(±1,190.59) 

579.61 (±771.27) 

Maximum morphine 

equivalent dose 

147.45 (±222.63) 163.04 (±232.22) 115.08 (±197.98) 

Duration in days -

opioid use 

1,181.65 

(±1,309.36) 

1,407.37 

(±1,468.33) 

974.96 (±1,058.91) 

 

Table 3 provides the sample sizes used for each model. Of the three modeling 

approaches, logistic regression, random forest, and deep neural network models, the 

random forest classifier was found to perform the best, with AUC measures in the range 

of 0.75-0.82 for all the cases. In general, the other classifiers also performed reasonably 

well, indicating that the dataset was self-consistent.  
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Table 3: AUC, precision (P), recall (R), and F1 performance scores of trained machine 

learning algorithms for the two datasets. Holdout scores presented. 

For each dataset the demographics and patient numbers with OUD diagnoses are listed. 

For example, column 2 (dataset-1) in Table 3 lists the total number of patients and the 

subset with OUD diagnoses, 602,394 and 24,117 respectively. Precision (P) 

measured how accurate the positive predictions were, i.e., what percentage of positive 

predictions were correct, while recall (R) measured how well the classifier found the 

actual positives, i.e., which percentage of actual positive samples were correctly 

classified. For all of our models, we balanced the dataset (see Methods). In general, our 

models had a higher recall, compared to precision. We tried to minimize the risk of not 

warning a patient who may be at risk by minimizing the Miss Rate/False Negative 

Rate FNR = FN / P = 1 - Recall. F1 score is the harmonic mean of precision and recall, 

thus the F1 score shows the model’s balanced ability to both capture positive cases 

(recall) and be accurate with the cases it does capture (precision). In our case it's just 

another validation, similar to AUC. 

 

Stratification by age reveals differences in variable importance numbers 

Because the random forest classifier provided the best performance, we used this scheme 

to develop individual models for each of the age stratified subgroups of dataset-1 and 

dataset-2. 

CLASSIFIER Dataset-1 Dataset-2 

Size  

OUD patients 

602,394  

(24,117) 

141,734 

(4,221) 

Logistic Regression AUC: 0.7794 

F1: 0.7740 

P: 0.7692 

R: 0.7789 

AUC: 0.7612 

F1: 0.7601 

P: 0.7795 

R: 0.7416 

Random Forest AUC: 0.7911 

F1: 0.7985 

P: 0.7862 

R: 0.8112 

AUC: 0.8118 

F1: 0.8181 

P: 0.7901 

R: 0.8482 

Deep Neural 

Network 

AUC: 0.7723 

F1: 0.7966 

P: 0.7304 

R: 0.8760 

AUC: 0.758 

F1: 0.7704 

P: 0.7350 

R: 0.8096 
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The random forest classifier provides a utility to calculate Gini feature importance for 

each of the inputs by ranking its importance in predicting the output [26; 27], similar to 

ranking schemes used previously [28-30]. The relative importance of each variable is 

provided by its ranking which sum to 100 for all the variables. That is, all the relative 

importance numbers in the figure for the 35 variables in each of the three age categories 

add up individually to 100. For this reason, the higher the importance number of a 

variable, the more its relative importance in predicting the output. This was performed for 

both datasets 1 and 2, with results shown in Figures 2 and 3, respectively. Such an 

analysis provides important insights for the user and adds the attribute of ‘explainablity’ 

that is sought from machine learning models [31]. The relative importance of the various 

variables in predicting OUD was explored for each of the models developed when 

stratifying the datasets by age (figures 2 and 3).  

 

The results of random forest modeling to rank the importance of the variables in 

predicting OUD in dataset-1 are shown in Figure 3, for the three age categories 18-34, 

35-64, and >64 yrs. Interestingly, four out of the top five features as far as importance 

were related to prescriptions, with the feature of age in the fifth place. The prescription 

features included the total number of days of early refills, duration of opioid use, the 

maximum duration of early refills, and the total duration of late refills. The order was 

largely the same in all three age groups. The predictive importance for these five 

variables were significantly higher compared to those of the next five in the group listed 

in figure 3 (p<0.001). Age within each stratified group, which was fifth in rankings, was 
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itself an important predictor of OUD. This prediction with age had a positive correlation 

for patients 18-34 years and a positive correlation for those >64 years. Furthermore, we 

found that the prescription-fill features of opioid use length, total opioid days late, and 

maximum opioid days early were significantly more important for the >64 age group 

compared to younger groups (p<0.001 and p<0.001 respectively). While maximum 

morphine dose was not a top 5 predictor, it was significantly more important for patients 

>64 years and had a 1.23 times higher importance number, compared to those younger 

(p<0.001). The model revealed that prior substance use disorder diagnoses 

(othersubstb4depend variable) was significantly more important in predicting opioid use 

disorder for younger (18-34) and mid-age (35-64) groups, compared to the older >64 

years patient group (5.91x; p<0.001 and 8.04x; p<0.001, respectively). The same was 

true for cocaine use disorder as it was significantly more important in predicting OUD for 

younger (18-34) and mid-age (35-64) groups, compared to the older >64 years patient 

group (8.24x; p<0.001 and 8.84x; p<0.001, respectively). Another insight from the model 

was that alcohol use disorder was significantly more important for the younger age group 

compared to the older groups (18-34 vs 35-64: 2.59x, and 35-64 vs >64: 2.01x; p-values 

of 0.001 and 0.001, respectively). 
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Figure 3 Variable importance stratified by age, using random forest classifier. For 

dataset-1, we determined the feature importance for three distinct age groups: 18-34, 35-

64, and >64 yrs. (ordered by importance number for the 18-34 age group). The X axis is 

the relative feature importance determined by random forest while the y axis denotes 

each feature.  
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Figure 4: Feature importance stratified by age, using random forest classifier for dataset 

2.  

For dataset-2, we determined the feature importance for three distinct age groups: 18-34, 

35-64, and >64 yrs. (ordered by importance number for the 18-34 age group) in Figure 4. 

The X axis is the relative feature importance determined by random forest while the y 

axis denotes each feature.  
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Predictor variable importance numbers were largely consistent across decades  

Datasets-1 and 2 enabled comparisons of variables as they relate to OUD prediction 

performance to determine if indicators may have changed between 2001-2012 and 2013-

2021. Dataset-2 had 84,603 patients that were shared with dataset-1, with 3,120 OUD 

cases. Note that OUD cases from 2000-2012 were excluded from dataset-2 (see Fig. 1 

and methods). Similar to the analysis in the previous dataset, we stratified dataset-2 by 

age, and trained the random forest classifier for each of the stratified datasets separately, 

and then generated variable importance numbers for the age stratified categories as 

shown in figure 4. Prescription-fill variables were again the top variables in all stratified 

subsets of dataset-2. As noted earlier, dataset-2 shared 59% of the patients with dataset-1 

which accounts for lower numbers of patients in the 18-34 category and the >64 category. 

Nevertheless, prescription-fill variables clearly dominated the importance number 

rankings in datasets 1 and 2, confirming their overall importance in predicting future 

OUD.  

Table 4 Change in prescription variables across decades. 

 

 

 

 

 

* the differences were significant (p<0.001) for all variables listed 

 

Percent change in mean values 

from Decade 1 to Decade 2 

OUD Diagnosed 

Patients* 

Non-OUD 

Patients* 

Total opioid pickup days early 37.19% 13.09% 

Total opioid pickup days late -38.16% -15.86% 

Maximum opioid pickup days 

early 

-13.78% -15.54% 

Maximum morphine dose -40.62% -28.53% 

Opioid use length -48.80% -29.55% 

Opioid dose change -53.05% -28.78% 
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Raw prescription-related variables for each decade were extracted for OUD diagnosed 

patients, and non-OUD diagnosed patients.  The values shown are changes in prescription 

variables across decades (datasets 1 and 2 for decades 1 and 2, respectively). Percent 

change was calculated for each group OUD and non-OUD for each case [(mean value in 

dataset 1 – mean value in dataset 2)/(mean value in dataset 1)]. Paired sample t-test was 

used to assess changes in the same patient. 

Given the importance of prescription-fill variables in predicting OUD, we explored how 

the raw measures of these variables compared across decades 2000-2012 (dataset 1; 

decade-1) vs 2013-2021 (dataset 2; decade-2). Table 4 lists the results of this analysis. 

Changes in the raw measures of the prescription-fill variables indicated an increased 

urgency in obtaining prescriptions in 2013-2021 compared to 2000-2012, i.e., patients 

came earlier or delayed less. 

 

An investigation of the changes in characteristics for the same patient between time 

periods when they did not have OUD (2000-2012; decade-1) vs when they did (2013-

2021; decade-2) revealed that for the same patient, the means of the raw prescription-fill 

variable related to total opioid days late was significantly lower in decade-2 compared to 

decade-1 (0.3098 vs 0.5275, -41.3%, p<0.0001; t-test).  Similarly, the total number of 

early refills days  was significantly higher in decade-2 compared to decade-1 (0.1982 vs 

0.1472; +34%, p<0.0001; t-test); (ii) the difference in means for depression was 

significantly higher in decade-2 compared to decade-1 (normalized means – 1=observed, 

0=not observed; 0.8455 vs 0.7862, +7.5%, p<0.0001); (iii) Other substance use disorder 

was also higher in decade-2 compared to decade-1 (0.3897 vs 0.3356; +16.1%, p=0.0001; 
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t-test). In addition to yielding further insights, these longitudinal changes in the raw 

measures for four of the variables deemed important in predicting OUD (Figure 3), and 

similar findings in Table 4, provide validation for the ranking of predictor variables in 

their ability to forecast OUD (Figures 3 and 4). 
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DISCUSSION  

Machine learning models using EHR data were found to be viable in predicting OUD. 

Duration of opioid use, total days from early opioid fills, and total number of late opioid 

fill days were the most important predictors of OUD. These findings were consistent for 

both the period when the opioid epidemic was worsening (2000-2012) and during the 

period of declining opioid prescription rates and doses (2013-2021). 

 

Unexpectedly, other forms of substance use disorders and common psychiatric disorders, 

e.g., depression, did not have the same magnitude of contribution to OUD as the 

prescription characteristics. However, the present findings are consistent with prior 

studies demonstrating that after the publication of the CDC guideline, more potent and 

high dose opioids continue to be prescribed to patients at greatest risk for OUD [17]. This 

indicates that modifiable factors, (e.g., duration of opioid prescriptions) are key 

contributors to OUD. Because early fills and long duration prescriptions continue to 

predict OUD following decreases in opioid prescribing [1; 2] and the release of the 2016 

CDC’s opioid prescribing guideline [32] further interventions designed to reduce long 

duration opioid prescribing and early refills to patients at risk for adverse opioid 

outcomes is warranted [33].   

 

Our results are consistent with a machine learning algorithm which identified that opioid 

use duration and overlapping opioid prescriptions distinguished OUD in a large cohort of 

medical claims data from 2006 to 2018 [11].  Our findings are largely consistent with an 

analyses of private sector EHR data which observed opioid medications were the 4th most 
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important measurement predicting OUD(Dong et al). Direct comparisons between our 

findings and this prior study is limited because we modeled multiple opioid medication 

measures, including early refills while Dong and colleagues modeled any opioid 

prescription. In addition, VHA patients tend to stay within the VHA system as compared 

to private sector patients who are more likely to change providers as their source of 

health insurance varies over time. Using VHA data should reduce misclassification of 

outcome and predictor diagnoses relative to data from private sector health care systems 

where fragmented health care could generate more missed diagnoses when patients move 

from one healthcare system to another. Including the duration of an opioid prescription 

and early refills in our predictive model better captures risk factors for OUD, specifically 

long-term opioid use and using more than prescribed leading to early fills are indicators 

of the development of problem opioid use. These are stronger predictors of OUD as 

compared to exposure to any opioid medication. 

 

Our findings differ from a predictive model using commercial EHR data, which observed 

mood disorder to be the most important predictor of diagnosed substance use disorder, 

not specific to OUD [13].  This suggests machine learning algorithms should be tailored 

to the type of substance use disorder (SUD), and factors contributing to OUD may not be 

the same as those which predict other types of substance use disorder. 

 

Additional research is needed to establish the accuracy of predicting OUD in different 

patient populations.  Predictive models should be validated by determining how well the 

model predicts undiagnosed OUD.  By administering diagnostic interviews to patients 
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with and without a medical record diagnosis for OUD a true gold standard can be 

obtained.  The model should be re-calibrated after predicting OUD cases confirmed by 

diagnostic interview.  

 

Because the strongest predictors of OUD are characteristics of the opioid prescription, the 

clinical utility could be very high.  EHR best practice alerts could caution prescribers 

when the combination of opioid dose, duration and other factors found to predict OUD 

indicate high risk 

Limitations  

It was not determined if the opioids were taken as prescribed, taken with other 

prescriptions obtained outside the VA or supplemented with illicit opioids. Retrospective 

medical record data is vulnerable to misclassification and the contribution of some 

diagnoses may be decreased to the degree that patients with a condition (e.g., depression) 

are misclassified as unaffected. The VHA patient population is predominately male and 

has a high rate of comorbidity, therefore results may not generalize to non-VHA patients. 

It is possible that the results from Veterans Health Administration data may not generalize 

to private sector health care systems.  However, numerous studies using VHA data on 

topics ranging from the association between long-term opioid use and new onset 

depression [17] to the link between metformin and dementia [34] and vaccinations and 

dementia [35-37] have been replicated in private sector medical record and medical 

claims data. 
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Compared to manual chart abstraction, the validity of OUD diagnoses in the medical 

record ranges from fair to good [38-41] and depending on which elements of the medical 

chart are used to count toward an OUD diagnosis, the agreement between medical record 

and diagnoses is 80% or better. However, this does not distinguish between primary 

prescription OUD vs. other OUD types such as heroin use disorder. 

Our study did not use a pure data mining approach. We selected potential predictors of 

OUD based on theory or previous literature. Further research is needed to compare the 

utility of predictive algorithms that are completely data driven and those that are 

developed with user input. 

 

Conclusions. Our results point to modifiable prescribing behavior as the key contributor 

to OUD. Replication in other healthcare systems is needed and comparisons to data 

driven models warranted. Overall, results hold promise that machine learning models can 

reasonably predict OUD and could be incorporated in the electronic health record as a 

clinical decision aid.  
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Introduction 

Cholinergic, GABAergic, glutamatergic and peptidergic neuronal groups in the 

basal forebrain (BF) innervate a wide array of cortical and subcortical limbic regions, 

including the hippocampal formation and the amygdaloid complex (Mesulam et al. 1983; 

Frotscher and Léránth 1985; Freund and Antal 1988; Zaborszky et al. 1999, 2015; 

Mascagni and McDonald 2009; Muller et al. 2011; Mcdonald et al. 2011; Agostinelli et al. 

2019) . Medial septal cholinergic and GABAergic innervation of the hippocampus are well-

studied for their role in several cognitive functions and in hippocampal oscillatory rhythms 

(Frotscher and Léránth 1985; Freund and Antal 1988; Pang et al. 2001; Buzsáki 2002; Xu 

et al. 2004; Yoder and Pang 2005; McNaughton et al. 2006; Roland and Savage 2009; 

Hangya et al. 2009; Vega-Flores et al. 2014; Roland et al. 2014; Király et al. 2023) . The 

BF gives rise to equally dense projections to the amygdaloid complex from the ventral 

pallidum (VP) and the substantia innominata (SI)  (Carlsen et al. 1985; Mascagni and 

McDonald 2009; Mcdonald et al. 2011; Agostinelli et al. 2019; Fu et al. 2020) . However, 

the mechanistic role of BF projections in amygdala oscillations and the affective processes 

orchestrated by the amygdaloid complex remains to be elucidated. Here, we utilized a two-

fold approach to characterize the anatomical structure and functional role of the BF 

innervation of the amygdaloid complex. We first carried out retrograde labeling and 

immunohistochemical characterization of BF neurons that project to various nuclei of the 

amygdala and the bed nucleus of stria terminalis (BNST). Once we revealed the major 

source of cholinergic and non-cholinergic innervation of the amygdaloid complex, we 

developed a biophysically realistic amygdala network model, and tested the role of BF in 

the emergence of basolateral amygdala network activity and theta oscillations in silico. 
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A subpopulation of GABAergic neurons located in the VP and SI target the basal 

(BL); and to a lesser degree, the lateral (LA), basomedial (BM) and the central nuclei (CeA) 

of the amygdaloid complex, as well as the BNST (Carlsen et al. 1985; Mascagni and 

McDonald 2009; Mcdonald et al. 2011; Mongia et al. 2016; Agostinelli et al. 2019). The 

cholinergic to non-cholinergic ratio of the basolateral amygdala-projecting BF neurons is 

estimated to be approximately 3:1 (Carlsen et al. 1985), with GABAergic neurons making 

up at least 10% of the complete projections (Mascagni and McDonald 2009). Septo-

hippocampal GABAergic projections are known to exclusively (Freund and Antal 1988b; 

Unal et al. 2015) target GABAergic interneurons in the hippocampus, contributing to and 

leading the theta activity by forming an interneuron-type and time (oscillatory phase)-

specific, complex disinhibitory circuit with pyramidal neurons (Tóth et al. 1997; Yoder 

and Pang 2005; Hangya et al. 2009; Király et al. 2023). As with the GABAergic septo-

hippocampal neurons, large majority of VP/SI GABAergic amygdalopetal projection 

neurons form synapses selectively with GABAergic interneurons in the amygdala 

(Mcdonald et al. 2011). This suggests that BF GABAergic projections that target different 

limbic structures may share common structural properties and circuit-level functions with 

the septo-hippocampal system (Tóth et al. 1997; Unal et al. 2018). 

Based on the anatomical commonalities between the septo-hippocampal 

GABAergic pathway and the amygdaloid-complex-targeting VP/SI GABAergic 

projections, we theorize that BF GABAergic neurons carry out a uniform function in all 

downstream limbic structures via formation of similar interneuron-type and oscillatory 

phase-specific disinhibitory circuits (Tóth et al. 1997; Yoder and Pang 2005; Hangya et al. 

2009). As septo-hippocampal GABAergic projections are required for several forms of 
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hippocampal functioning, we hypothesize that VP GABAergic innervation of the amygdala 

is required for regulating fear learning-related theta oscillations  (Seidenbecher et al. 2003; 

Lesting et al. 2011; Stujenske et al. 2014; Davis et al. 2017) in the amygdala.  

Here, we present an anatomical-computational investigation of this theory by 

utilizing retrograde tract-tracing coupled to fluorescent immunohistochemistry, and a 

biophysical network model of the BLA. In anatomical experiments, we identify and 

quantify parvalbumin (PV)- or calbindin (CB)-immunoreactive (+) putative GABAergic, 

and choline acetyltransferase (ChAT)-immunoreactive cholinergic BF neuronal subgroups 

that target the “input” (LA and BL) and “output” centers (CeA and BNST) of the 

amygdaloid complex. Based on our findings and previous anatomical data, we develop a 

1000-cell computational BLA network model (Hummos and Nair 2017; Feng et al. 2019) 

that incorporates principal neurons and 3 different BLA interneuron types, rhythmic 

GABAergic and non-rhythmic cholinergic VPSI afferents, and constant excitatory 

thalamic/cortical inputs of the BLA. We utilize this model to investigate the involvement 

of these BF projections on the network oscillations of the BLA, which stands at the center 

of the so-called “fear circuit” (Sah and Westbrook 2008; Shin and Liberzon 2010). We 

show that BF projections play a key role in BLA theta genesis, and that cholinergic 

projections modulate theta’s power minimally. 
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Materials and Methods 

Neuroanatomical Experiments 

Animals 

Adult male Wistar rats (280-380 g; n = 9) were housed in cages of four with ad 

libitum access to food and water under controlled laboratory conditions (21 ± 1 °C; 40 – 

60% humidity; 12:12 day/night cycle, lights on at 8:00 AM). All experimental procedures 

were approved by the Boğaziçi University Institutional Ethics Committee for the Use of 

Animals in Experiments (BÜHADYEK) and carried out by licensed personnel. 

Stereotaxic surgery and retrograde tract-tracing 

Animals were deeply anesthetized with IP injections of a ketamine (80 mg/kg) - 

xylazine (13.3 mg/kg) mixture. Following induction of anaesthesia, a local anaesthetic 

(Vemcaine, 10%) and an povidone-iodine solution were applied to the shaved head before 

placing the animal to the stereotaxic frame (Kopf Instruments, USA). A homeothermic 

heating pad was used to monitor and maintain the body temperature at 36 °C. Two 

unilateral craniotomies were performed above the anterior-posterior (AP) and medial-

lateral (ML) coordinates of the target nuclei. Red (diluted in saline by 1:2, volume = 200 

nl) and green (undiluted, volume = 200 nl) fluorescent latex microspheres (Retrobeads, 

Lumafluor Inc., USA) were injected into the LA (AP = −2.80, ML = ±5.30, DV = −7.30), 

BL (AP = −2.80, ML = ±4.60, DV = −8.20), CeA (AP = −2.40, ML = ±4.20, DV = −8.00), 

and the central BNST (cBNST) (AP = −0.48, ML = ±1.40, DV = −6.00) (coordinates in 

mm are based on the rat brain atlas of (Paxinos and Watson, 2007); Fig. 1A-B).  

In each animal, we injected one color of Retrobeads into one of the amygdaloid 

nuclei, (LA, BL or CeA) and the other into the cBNST (n = 3 animals for each pairing). 
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We counterbalanced the target hemispheres, ensuring that same number of animals 

received injections in the right and left hemisphere. The tracers (green or red Retrobeads) 

were counterbalanced for each target region (Fig. 1A-B). Injections were made with a 

microinjection syringe pump and a 1 μL micro-injection syringe (Hamilton, NV, USA). 

Each tracer injection took 5 minutes (40 nl/s), after which the syringe was maintained at 

the target location for 10 minutes before retrieval to minimize dorsal diffusion. Once the 

incision was sutured, a local analgesic (Anestol pomade, 5% lidocaine and Jetokain, 5 

mg/kg) was applied to the cranial surface before the animal was removed from the 

stereotaxic apparatus. The animals underwent a 5-day post-surgical recovery period in 

order to ensure maximal axonal transport of the Retrobeads.  

Perfusion-fixation and tissue preparation 

Following the recovery period, animals were deeply anesthetized by IP injections 

of the ketamine (80 mg/kg) - xylazine (13.3 mg/kg) mixture, and perfused transcardially 

with 0.9% saline and 4% depolymerized paraformaldehyde (PFA) in 0.1M PBS. Removed 

brains were post-fixed in the same fixative solution for 24-48 h at 4 °C. They were 

thoroughly rinsed following post-fixation and transferred to 0.1 M PB for slicing. Serial 

60-80 µm thick coronal sections were obtained using a Leica VT 1000S vibratome (Leica 

Microsystems, Germany). 

Immunohistochemistry 

We employed the immunofluorescence labelling protocol from Unal et al., 2015. 

PBS with 0.3% Triton X-100 (PBS-TX) was used in all solutions and rinsing procedures 

to achieve tissue penetration. Coronal sections were rinsed 3 times (10 min each) in PBS-

TX, followed by 1 h blocking at RT in 20% Normal Horse Serum (NHS) or Normal Goat 
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Serum (NGS), depending on the secondary antibody. The sections were then incubated for 

72 h at 4 °C in PBS-TX containing the primary antibodies and 1% NHS/NGS (refer to 

Table I for details of primary antibodies). Following 3x10 min of rinsing, the sections were 

incubated in the secondary antibody solution containing 1% NHS/NGS in PBS-TX for 4 h 

at RT. Sections were subsequently mounted and cover-slipped using methyl salicylate 

(Sigma-Aldrich, MO, USA) and examined using an epifluorescence (Olympus BX43) or 

confocal microscope (Leica SP8, Leica Microsystems).  

--- insert Table I here --- 

Retrogradely labeled neurons were tested for different molecules listed in Table I. 

PV, CB, or AT-rich sequence-binding protein-1 (SATB1) immunoreactivity was tested to 

determine non-cholinergic, putative GABAergic neurons. ChAT immunoreactivity was 

tested to determine the cholinergic projection neurons. Leu-enkephalin was used as 

regional marker for VP (Fig. 1B). We used the following secondary antibodies: goat anti-

rabbit Alexa Fluor 405 (1:250; A31556, Invitrogen), donkey anti-rabbit Alexa Fluor 488 

(1:250; ab150073; Abcam), donkey anti-goat Cy3 (1:250; 705-165-147; Jackson 

ImmunoResearch Laboratories), donkey anti-goat DyLight650 (1:1000, ab96938, Abcam). 

A set of sections from each brain were stained with DAPI or cresyl violet to aid 

histological identification of the injection sites and cytological differentiation of the BF 

nuclei. DAPI staining was performed by incubating sections in the DAPI solution (1:2000, 

D3571, ThermoFisher) for 10 minutes. The sections were rinsed in PBS 3 times (10 min 

each) at RT and cover-slipped. For cresyl violet staining, the sections were mounted on 

slides 3 days before the procedure and incubated for 1 min at 40 °C immediately before the 

staining. Slides were transferred through 100% ethanol (EtOH) (2 min), two sets of xylenes 
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(2 min each), 100% EtOH (2 min), 70% EtOH (2 min), 20% EtOH (2 min), dH2O (1 min), 

cresyl violet solution (0.5 g cresyl violet acetate and 15 ml acetic acid in 500 ml dH2O, 15 

min), differentiation solution containing 70% EtOH and 10% acetic acid (10 s), 

differentiation solution containing 100% EtOH and 10% acetic acid (10 s), 100% EtOH (5 

min) and two set of xylenes (5 min each). Slides were then cover-slipped using Entellan 

new (Merck) mounting medium and examined under a light microscope. 

 

Microscopy  

Initial observations were performed with Olympus cellSens Imaging Software v2.2 

using an epifluorescence microscope (Olympus BX43) equipped with a monochrome CCD 

camera (Olympus XM10). The images were obtained with 4x (Plan Apochromat, 

N.A. = 0.02, Nikon), 10x (Plan Fluor, N.A. = 0.30, Nikon), and 20x (Plan Fluor, 

N.A. = 0.50, Nikon) objective lenses. The 4x objective lens was used for histological 

analysis, and 10x and 20x objective lenses were used to locate retrogradely labeled neurons 

in the target basal forebrain nuclei. Four fluorescent filter sets (for DAPI, Alexa Fluor 488, 

Cy3, and Cy5) were used for the detection of Alexa Fluor 405 fluorophores and DAPI, 

Alexa Fluor 488 fluorophores and green Retrobeads, Cy3 fluorophores and red Retrobeads, 

and DyLight 650 fluorophores respectively. 

Following wide-field epifluorescence microscopic observations, multichannel 

fluorescence images were acquired with a Leica SP8 confocal microscope (Leica 

Microsystems, Wetzlar, Germany) using the LAS X software (Leica Microsystems) at a 

minimum pixel resolution of 1024x1024. The images were obtained with 20x (Plan 

Fluotar, N.A. = 0.4, dry, Leica Microsystems) or 40x (Plan Apochromat, N.A. = 1.10, 
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water-immersion, Leica Microsystems) objective lenses. We used four distinct lasers at 

wavelengths of 405, 488, 552, and 638 nm in conjunction with PMT or HyD sensors to 

visualize the fluorescence signal. The pinhole size was set at 1 Airy unit. When z-stacks 

were acquired, we set the z-stack step size at half the optical section thickness. Post-

acquisition brightness and contrast adjustments were performed uniformly on the whole 

image using the “FIJI” (Schindelin et al. 2012) distribution of the ImageJ software. No 

non-linear or selective image adjustments were made on the acquired images. 

 

 

Cell quantification 

Retrogradely labeled neurons were manually counted in every other coronal section 

spanning the target basal forebrain nuclei: VP, SI, horizontal diagonal band (hDB), lateral 

preoptic nucleus (LPO), and hypothalamic medial preoptic nucleus/area (MPO/MPA). 

Neuron quantification in the rostral-most parts of the extended amygdala was included in 

the SI. Cell counts were added together to obtain a total labeled neuron value for each 

region of interest. Normalized counts were derived by dividing the total number of labeled 

somata quantified in each nucleus by the number of observed sections. A similar 

quantification method was followed for the immunolabeled neurons. For each section, we 

counted all the cell bodies that were immunoreactive for a molecular marker in each region 

and noted the number of neurons that show colocalization with Retrobeads. For each BF 

nucleus, we then calculated the percentage of neurons expressing each tested molecular 

marker among the observed retrogradely labeled neurons projecting to the LA, BL, CeA 
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or the cBNST. Drawings depicting the distribution of labeled neurons in the BF were made 

with a camera lucida. All figures were created using Adobe Illustrator (v 25.0). 

Model Implementation  

BLA network model Based on our observations in the anatomical study showing that there 

were significant non-cholinergic inputs from the BF with a dense putative GABAergic 

projection to the basolateral amygdala and utilizing previous anatomical information, we 

developed a 1000-neuron BLA network model using cellular and microcircuit parameters 

that include intrinsic (within BLA) and extrinsic (afferents to BLA) connectivity and 

synaptic strengths. The network model was run on the parallel NEURON 7.7 simulator 

(Carnevale and Hines 2006) and the Allen Institute’s Brain Modeling Toolkit (BMTK) 

with a fixed time step of 0.1 µs. We used the python package “BMTools” to verify network 

connectivity parameters and generate plots. For the neuron power spectrum density and 

frequency analyses, we calculated spectrums using the Welch Periodogram method 

(pwelch in MATLAB). Additional analysis and plots were generated in python. The full 

model is available for download through GitHub at 

https://github.com/tjbanks/AmygdalaTheta. 

 

Single cell models 

Principal neurons (PN) of the BLA (n = 800) were modeled in addition to three 

groups of interneurons: PV+ Basket cells (n = 93), CR+ interneurons that include 

interneuron-specific interneurons (ISI) and small cholecystokinin (CCK)-expressing cells 

(n = 56), and somatostatin (SOM)-expressing interneurons that include neurogliaform 

cells (NGFC; n = 51). Model neuron parameters are provided in Table III. 
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Principal neurons had three compartments: soma (diameter 24.75 µm, length 25 

µm), a proximal dendrite (diameter 3µm; length 270 µm), and an apical dendrite (diameter 

5 µm; length 555µm) to match passive properties. Values of specific membrane resistance, 

membrane capacity and cytoplasmic (axial) resistivity were, respectively, Rm = 40 ± 5 kΩ-

cm2, Cm = 2.4 µF/cm2, and Ra = 150 Ω-cm. Leakage reversal potential (EL) was set to -75 

± 4 mV. The resulting Vrest was -66 ± 4 mV for both types A and C cells, and the input 

resistance (RIN) was 140 ± 20 MΩ and 360 ± 20 MΩ, and time constant (τm) was ~30 ms 

and ~20 ms, for Type-C and Type-A cells, respectively. All of these values were within 

the ranges reported in physiological studies (Washburn and Moises 1992). Soma and 

dendrite compartments had the following currents: leak (IL), voltage-gated persistent 

muscarinic (IM), high-voltage activated Ca2+ (ICa), spike-generating sodium (INa), 

potassium delayed rectifier (IDR), A-type potassium (IA) (Li et al. 2009; Power et al. 2011) 

and hyperpolarization-activated nonspecific cation (Ih) current. In addition, the soma had a 

slow apamin-insensitive, voltage-independent afterhyperpolarization current (IsAHP) 

(Power et al. 2011; Alturki et al. 2016). The axonal compartments had the following 

currents: leak (IL), high-threshold sodium (INa1.2), low-threshold sodium (INa1.6), and 

potassium delayed rectifier (IDR) (Hu et al. 2009). PNs in the model had Type-A (adapting) 

and Type C (continuous) adaptation characteristic generated by adjusting magnitude of 

Ca2+-dependent K+ current, either 50 or 0.2 mS/cm2, respectively (Kim et al. 2013). PN 

models contained properties for low- and high- threshold oscillation to mimic physiological 

parameters as closely as possible (Pape et al. 1998; Li et al. 2009; Kim et al. 2013; Feng et 

al. 2016). 
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The PV+ interneuron model contained two compartments; a soma+axon (diameter 

15 µm; length 15 µm) and a dendrite (diameter 10 µm; length 150 µm). Each compartment 

contained a fast Na+ (INa) and a delayed rectifier K+ (IDR) current. Passive membrane 

properties of PV+ interneurons were Rm = 20 ± 1 and 20 ± 1 kΩ-cm2, Cm = 1 and 1 µF/cm2, 

Ra = 3375 and 150 Ω-cm, for soma and dendrite, respectively. The resulting Vrest was -70 

mV, input resistance (RIN) was 371MΩ, and time constant (τm) was 20 ms.  The passive 

properties and current injection responses (F-I curve) were all within the ranges in 

biological reports (Faber et al.,2001; Sah et al., 2003) 

The CR+ interneuron model contained three compartments; a soma+axon (diameter 

10 µm; length 20 µm) and two dendrites (diameter 3 µm; length 250 µm). Each 

compartment contained l-calcium current, fast Na+ (INa), persistent Na+ (INaP), h channel 

(IH), potassium delayed rectifier current (IKDR), voltage-independent afterhyperpolarization 

current (IsAHP), voltage-gated persistent muscarinic current (IM), and persistent Ca2+ 

current (ICaS). Passive membrane properties were Rm = 80 ± 1 kΩ-cm2, Cm = 1 µF/cm2 and 

Ra = 150 Ω-cm.  The resulting Vrest was -60 mV, input resistance (RIN) was 321 MΩ, and 

time constant (τm) was 20 ms. These passive properties and current injection responses (F-

I curve) were all within the ranges in biological reports (Caputi et al. 2008) 

The SOM+ interneuron model contained three compartments; a soma+axon 

(diameter 10 µm; length 20 µm) and two dendrites (diameter 3 µm; length 250 µm). Each 

compartment contained l-calcium current, fast Na+ (INa), persistent Na+ (INaP), h channel 

(IH), potassium delayed rectifier current (IKDR), voltage-independent afterhyperpolarization 

current (IsAHP), voltage-gated persistent muscarinic current (IM), and persistent Ca2+ 

current (ICaS). Passive membrane properties were Rm = 80 ± 1 kΩ-cm2, Cm = 1.3 µF/cm2 
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and Ra = 150 Ω-cm. The resulting Vrest was -70 mV, input resistance (RIN) was 290 MΩ, 

and time constant (τm) was 19 ms. These passive properties and current injection responses 

(F-I curve) were all within the ranges in biological reports (Fanselow et al. 2010) 

--- insert Table II here: Model neuron parameters --- 

 

Intrinsic and Synaptic currents 

The dynamics for each compartment (soma or dendrite) followed the Hodgkin-

Huxley formulation as previously described (D. Kim et al., 2013) in eqn. 1, 

𝐶𝑚𝑑𝑉𝑠/𝑑𝑡 = −𝑔𝐿(𝑉𝑠 − 𝐸𝐿) − 𝑔𝑐(𝑉𝑠 − 𝑉𝑑) − ∑ ∑ 𝐼𝑖𝑛𝑗
𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
𝐼𝑐𝑢𝑟,𝑠

𝑖𝑛𝑡
 (1) 

where 𝑉𝑠/𝑉𝑑 are the somatic/dendritic membrane potential (mV), 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡  and 𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
 are the 

intrinsic and synaptic currents in the soma, 𝐼𝑖𝑛𝑗 is the electrode current applied to the soma, 

𝐶𝑚 is the membrane capacitance, 𝑔𝐿 is the conductance of the leak channel, and 𝑔𝑐 is the 

coupling conductance between the soma and the dendrite (similar term added for other 

dendrites connected to the soma). The intrinsic current 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 ,      was modeled as 𝐼𝑐𝑢𝑟,𝑠

𝑖𝑛𝑡 =

𝑔𝑐𝑢𝑟𝑚𝑝ℎ𝑞(𝑉𝑠 − 𝐸𝑐𝑢𝑟), where 𝑔𝑐𝑢𝑟 is its maximal conductance, m its activation variable 

(with exponent p), h its inactivation variable (with exponent q), and 𝐸𝑐𝑢𝑟 its reversal 

potential (a similar equation is used for the synaptic current 𝐼𝑐𝑢𝑟,𝑠
𝑠𝑦𝑛

 but without m and h). 

The kinetic equation for each of the gating variables x (m or h) takes the form but without 

m and h). The kinetic equation for each of the gating variables x (m or h) takes the form 

𝑑𝑥

𝑑𝑡
=

𝑥∞(𝑉,[𝐶𝑎2+]
𝑖
)−𝑥

𝜏𝑥(𝑉,[𝐶𝑎2+]𝑖)
  (2) 
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where 𝑥∞ is the steady state gating voltage- and/or Ca2+- dependent gating variable and 

𝜏𝑥 is the voltage- and/or Ca2+- dependent time constant. The equation for the dendrite 

follows the same format with ‘s’ and ‘d’ switching positions in eqn. 1. 

Excitatory transmission was mediated by AMPA and NMDA receptors, while 

inhibitory transmission by GABAA receptors. The corresponding ionic currents were 

modelled by dual exponential functions (Destexhe et al. 1994; Durstewitz et al. 2000), as 

shown in eqns. 3-5 

 

𝐼𝐴𝑀𝑃𝐴 = 𝑤 × 𝐺𝐴𝑀𝑃𝐴 × (𝑉 − 𝐸𝐴𝑀𝑃𝐴) 

𝐺𝐴𝑀𝑃𝐴 = 𝑔𝐴𝑀𝑃𝐴,𝑚𝑎𝑥 × 𝐹𝐴𝑀𝑃𝐴 × 𝑟𝐴𝑀𝑃𝐴 
              𝑟𝐴𝑀𝑃𝐴¢ =  𝛼𝑇𝑚𝑎𝑥𝐴𝑀𝑃𝐴 × 𝑂𝑁𝐴𝑀𝑃𝐴 × (1 − 𝑟𝐴𝑀𝑃𝐴 ) − 𝛽𝐴𝑀𝑃𝐴 × 𝑟𝐴𝑀𝑃𝐴 

 (3) 

 

𝐼𝑁𝑀𝐷𝐴 = 𝑤 × 𝐺𝑁𝑀𝐷𝐴 × (𝑉 − 𝐸𝑁𝑀𝐷𝐴) 

𝐺𝑁𝑀𝐷𝐴 = 𝑔𝑁𝑀𝐷𝐴,𝑚𝑎𝑥 × 𝐹𝑁𝑀𝐷𝐴 × 𝑠(𝑉) × 𝑟𝑁𝑀𝐷𝐴 
𝑟𝑁𝑀𝐷𝐴¢ =  𝛼𝑇𝑚𝑎𝑥𝑁𝑀𝐷𝐴 × 𝑂𝑁𝑁𝑀𝐷𝐴 × (1 − 𝑟𝑁𝑀𝐷𝐴 ) − 𝛽𝑁𝑀𝐷𝐴 × 𝑟𝑁𝑀𝐷𝐴 

 (4) 

 

𝐼𝐺𝐴𝐵𝐴𝑎 = 𝑤 × 𝐺𝐺𝐴𝐵𝐴𝑎 × (𝑉 − 𝐸𝐺𝐴𝐵𝐴𝑎) 

𝐺𝐺𝐴𝐵𝐴𝑎 = 𝑔𝐺𝐴𝐵𝐴𝑎,𝑚𝑎𝑥 × 𝐹𝐺𝐴𝐵𝐴𝑎 × 𝑟𝐺𝐴𝐵𝐴𝑎 

𝑟𝐺𝐴𝐵𝐴𝑎¢ =  𝛼𝑇𝑚𝑎𝑥𝐺𝐴𝐵𝐴𝑎 × 𝑂𝑁𝐺𝐴𝐵𝐴𝑎 × (1 − 𝑟𝐺𝐴𝐵𝐴𝑎 ) − 𝛽𝐺𝐴𝐵𝐴𝑎 × 𝑟𝐺𝐴𝐵𝐴𝑎 

 (5) 

where V is the membrane potential (mV) of the compartment (dendrite or soma) where the 

synapse is located, I is the current injected into the compartment (nA), G is the synaptic 

conductance (µS), 𝑤 is the synaptic weight (unitless), and E is the reversal potential of the 

synapse (mV). gx,max is the maximal conductance (µS), F implements short-term plasticity 

and rx determines the synaptic current rise and decay time constants based on the terms 

αTmax and β (Destexhe et al. 1994). The voltage-dependent variable s(V) which 
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implements the Mg2+ block was defined as: s(V) = [1 + 0.33 exp(-0.06 V)]-1 (Zador et al. 

1990). The terms ONNMDA and ONAMPA are set to 1 if the corresponding receptor is open, 

else to 0. Previously published data were used to model reversal potential, rise/decay time 

constants and conductance (Feng et al. 2019; Galarreta and Hestrin 1997; Porter et al. 1998; 

Mahanty and Sah 1998; Thomson and Deuchars 1997; Weisskopf et al. 1999). For all 

connections, synaptic weight w was distributed log-normally with a cut off of three times 

the mean to prevent non-physiological values. The ionic current parameters are available 

in Table IV. 

--- insert Table IV here: Ionic current parameters --- 

 

Intrinsic connectivity 

A 1000-neuron homogenous network model of the BLA was generated with a 

neuronal composition of 56.9% PNA (n = 569), 23.1% PNC (n = 231), 9.3% PV INs (n = 

93), 5.6% CR+ (n = 56) and 5.1% SOM+ (n = 51). The PNs have mutual connections with 

all interneuron groups. PV+ interneurons target somata of the PNs and SOM+ interneurons 

and other PV+ cells, but not the CR+ group. CR+ interneurons form inhibitory synapses 

on all other neuron types, similar to PNs. SOM+ interneurons only target PNs and avoid 

other interneuron groups. Connectivity with interneurons were restricted to ~300 µm. The 

probability of unidirectional or reciprocal synaptic connections between PNs and 

interneurons was set to 16%. Axonal conduction delay was distance-dependent using a 

conduction velocity of 500 μm/ms. Synaptic connectivity parameters are listed in Table II. 

In order to combat edge effects, a “shell” of virtual neurons was generated around 

the “core” of true biophysical neurons. Virtual shell neurons were distributed uniformly in 
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the same way core neurons were and were connected to core neurons using the same 

synaptic parameters and connectivity rules as core-to-core neurons were. Shell neurons fire 

at a Poisson rate coinciding with network quiet-waking firing rates (mean, sigma for PNs: 

1, 0.8; PV+ interneurons: 30, 13; CR+ interneurons: 20, 4; SOM+ interneurons: 2, 1). 

--- insert Table III here: Synaptic connectivity parameters --- 

 

Extrinsic connectivity 

Input 1: Thalamic/cortical glutamatergic afferents 

Thalamo-cortical afferents were glutamatergic and were modeled as independent 2 

Hz Poisson trains, delivered to each PN, SOM, and CR cell, but not PV cell (Fig. 1) 

Input 2: Cholinergic innervation 

The effects of ACh were simulated by changing the relevant synaptic conductances, 

following prior work (Hummos et al. 2014). For affected synapses, the synaptic current 

was multiplied by a factor as listed below, for both iampa and iGABA. For example, in the case 

of iampa, we get Eqn. 7 below (replace ampa with GABA for the inhibitory synapses), 

𝑖𝑎𝑚𝑝𝑎 = 𝑖𝑎𝑚𝑝𝑎 ∗ (1 + 𝑏𝐴𝐶ℎ ∗ (𝐴𝐶𝐻 − 1))   (7) 

In Eqn. 7, bACh and ACH together control the strength and sign for the various ACH cases. 

For instance, via the equation, an ACH value of 2 allows bACh to influence iampa positively, 

to makes no change with ACH = 1, and to influence  iampa  negatively with ACH = -0.2. The 

specific bACh values (same for all ACH cases) and the corresponding synapses were as 

follows: 0.3 for all the thalamo-cortical afferent synapses, 0.3 for PV-PN and VP/SI-PN, 

0.4 for SOM-PN and CR-PN, and 0.3 for VP/SI-PV synapses.  
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Input 3: VP/SI GABAergic rhythmic innervation 

Rhythmic GABAergic input from the VP was designed using methods described 

by (Fink et al. 2015). Input was set to a specified frequency, and each cell responded to the 

input with "jitter" to represent intercellular variability. Jitter was Gaussian normal 

distributed (N) for each cell, with zero mean and SD 𝜎𝑗𝑖𝑡𝑡𝑒𝑟
2 . The time of the jth event of 

neuron i was given by: 

𝑡𝑗
𝑖 =  𝑗𝑇 + 𝑁(𝑂, 𝜎𝑗𝑖𝑡𝑡𝑒𝑟

2 )  (8) 

A total of 893 afferent cells were designed to individually exhibit independent 2 Hz 

Poisson activity. The afferents project onto 800 PN and 93 Int Basket cells with an 

average convergence of 1 and 10.1 cells, respectively. Two states were considered for 

these afferents, the non-modulated with each afferent being independent at 2 Hz as 

above. For the theta-modulated state the firing rate of the afferents were modulated with a 

sine wave: 

𝑟[𝑡] =  𝐴 ∗ (sin(2 ∗ 𝜋 ∗ 𝑓 ∗ 𝑡) + 𝜙) +  𝑜𝑓𝑓                     (9) 

where 𝐴 =
𝑜𝑓𝑓
1

𝑑
−1

, 𝑓 is the frequency, 𝑡 is a vector representing time, 𝜙 is the phase, 𝑜𝑓𝑓 is 

the offset firing rate of the spike train being modulated and 0 < 𝑑 < 1 is the depth of 

modulation which represents the amplitude of the sine wave relative to 𝑜𝑓𝑓. We used a 

depth of modulation 0.7. To generate the spike train, a random vector x[t] was generated 

with values uniformly distributed between 0 and 1. A spike was generated if 𝑥[𝑡] ≤

𝑟[𝑡]𝑑𝑡 where dt in our case was 0.1.  

For experiments with theta-modulated VP input, jitter was applied at 8Hz. For all other 

experiments, no jitter was applied and VP input was 2Hz Poisson. 
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Input 4: Background input to all cells 

To reproduce membrane potential fluctuation seen in vivo, we used a point 

conductance input onto the soma to imitate stochastic background synaptic activity using 

the Ornstein–Uhlenbeck process (Destexhe et al., 2001). Specifically, stochastic 

background input had two independent components, excitatory and inhibitory, for PNs 

and PVs, SOMs, and CR cells, as modeled previously by our group (Feng et al 2019). 

Conductance values, mean(std), for excitatory and inhibitory inputs for the cell types 

were as follows: PNa: 0.0032(0.003), 0.021(0.008); PNc: 0.0032(0.003), 0.021(0.008); 

PV: 0.00121(0.00012), 0.00573(0.00264); SOM: 0.00121(0.00012), 0.00573(0.00264); 

CR: 0.0032(0.003), 0.021(0.008). 

Conduction delays 

Conduction delays between cells were calculated and assigned in a distance-

dependent manner: 

𝐷 =
√(𝑥1−𝑥2)2+(𝑦1−𝑦2)2+(𝑧1−𝑧2)2

𝐴𝑉
  (6) 

Where (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) are the coordinates of the pre and postsynaptic cells, 

respectively. 𝐴𝑉        is the axonal conduction velocity (0.5 m/s). 

Short-term plasticity 

Modeled AMPA and GABA synapses exhibited short-term synaptic plasticity. We 

used previous reports to model short-term depression between PNs (Silberberg et al. 2004; 

Feng et al. 2019), and between PNs and interneurons (Cauli et al. 2014; Mahanty and Sah 

1998; Silberberg et al. 2004; Fanselow et al. 2008; Woodruff and Sah 2007). Short-term 

facilitation was also implemented between PNs and interneurons (Ali and Thomson 1998; 

Cauli et al. 2014; Silberberg and Markram 2007; Minneci et al. 2007; Riedemann 2019). 
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For facilitation, the factor F was calculated using the equation: 𝜏_𝐹 ∗ 𝑑𝐹/𝑑𝑡 = 1 −

𝐹  and was constrained to be ≥ 1. After each stimulus, F was multiplied by a constant, f (≥ 

1) representing the amount of facilitation per pre-synaptic action potential and updated as 

F→F*f. Between stimuli, F recovered exponentially back toward 1. A similar scheme was 

used to calculate the factor D for depression: τ_D*dD/dt=1-D and D constrained to be ≤ 1. 

After each stimulus, D was multiplied by a constant d (≤ 1) representing the amount of 

depression per pre-synaptic action potential and updated as D→D*d. Between stimuli, D 

recovered exponentially back toward 1. We modelled depression using two factors d1 and 

d2 with d1 being fast and d2 being slow subtypes, and d=d_1*d_2 and was constrained to 

be ≥ 1. After each stimulus, F was multiplied by a constant, f (≥ 1) representing the amount 

of facilitation per pre-synaptic action potential and updated as F→F*.  

 

LFP calculation 

Transmembrane ionic currents from each compartment of the model neurons were 

produced by using the extracellular mechanism in NEURON (Carnevale and Hines 2006; 

Parasuram et al. 2016). The extracellular potential arising from each neuronal compartment 

was then calculated using the line source approximation method, which provides a better 

approximation than using point sources (Gold et al. 2006; Schomburg et al. 2012). The 

extracellular potential of a line compartment was estimated as  

∅𝐸𝑃 =
𝐼

4𝜋𝜎∆𝑠
log |

√ℎ2+𝑟2−ℎ

√𝑙2+𝑟2−𝑙
|  (9) 

where, I denotes the transmembrane current from that compartment, ∆s the length of the 

line compartment, r the radial distance from the line, h the longitudinal distance from the 

end of the line, and  𝑙 = ∆𝑠 + ℎ   the distance from the start of the line (Parasuram et al. 
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2016). We chose conductivity 𝜎 of the extracellular medium as 0.3 S/m (Goto et al. 2010; 

Einevoll et al. 2013). The individual extracellular potentials were summed linearly (Lindén 

et al. 2014) at 0.5 ms resolution, to obtain ∅𝐿𝐹𝑃𝑠 (eqn.10) as the LFP for an N-neuron 

network with n-compartment-cells. 

∅𝐿𝐹𝑃𝑠 = ∑ ∑
𝐼𝑁𝑖

4𝜋𝜎∆𝑠𝑁𝑖

log |
√ℎ𝑁𝑖

2+𝑟𝑁𝑖
2−ℎ𝑁𝑖

√𝑙𝑁𝑖
2+𝑟𝑁𝑖

2−𝑙𝑁𝑖

|𝑛_𝑠𝑜𝑢𝑟𝑐𝑒
𝑖=1

𝑁_𝑛𝑒𝑢𝑟𝑜𝑛𝑠
𝑁=1   (10) 

where Ni denotes ith compartment of Nth neuron in the network.  

 

Entrainment to LFPs 

For calculating the entrainment and preferred phase of cells, we bandpass filtered 

the LFPs in the frequency band of 4 to 12 Hz using a 2 pole Butterworth filter implemented 

with the MATLAB function filtfilt, which performs forward and backward filtering to 

minimize phase distortion. A Hilbert transform of the resulting signal was then computed 

to determine the phase and amplitude at each instant (Amir et al., 2018). This was used to 

assign a phase to each spike from a neuron.  

 

Computational Experiments 

A series of computational experiments, labeled as Cases 1-6 below, were performed to 

characterize the roles of cell types and afferents in creating and modulating the theta 

rhythm in the amygdala. Each simulation run lasted 15 seconds, of which only the last 10 

seconds were retained to avoid transients in the initial part. Each case was run with 10 

random seeds and the averaged results are reported as mean and SD. 
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Case 1. Baseline state with 2 Hz Poisson input from the thalamocortical afferents, and a 2 

Hz non-modulated Poisson input from VP/SI, both delivered as indicated in an earlier 

section (also see Fig. 1). This baseline case had cholinergic tone with ACH=1. 

Case 2. Same as Case 1, but with the inhibitory VP/SI inputs as rhythmic with jitter as 

indicated earlier. 

Case 3. Same as Case 2, but with cholinergic tone increased by setting ACH=2. 

Case 4. Same as Case 2, but with cholinergic tone decreased by setting ACH=-0.2 

Case 5. Same as Case 1 (without rhythmicity in the VP/SI input), but with cholinergic 

tone increased by ACH=2, instead of 1. 

Case 6.  Same as Case 1, but with cholinergic tone decreased by setting ACH=-0.2 

 

Relative contributions of cell types to theta power 

In this set of experiments, we inactivated different cell types sequentially to investigate 

their relative contributions to the peak theta power in the LFP. This was done by 

disconnecting all efferents from that particular cell type (see schematics). This causes the 

firing rates of the PNs to increase, and to bring them down to baseline levels for a fair 

comparison, we reduced the thalamo-cortical input to the PNs appropriately. We were 

successful in matching baseline firing rates using such a procedure as shown in the inset 

table in Fig. 6. 
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Results 

Neuroanatomical Characterization  

Retrograde labeling 

Histological assessment revealed that the surgeries resulted in successful local 

injections into the target nuclei with negligible diffusion of Retrobeads to neighboring 

regions (see Fig. 1A-F). Retrobeads were observed to be retrogradely transported into the 

cell bodies of BF neurons following injections into the amygdaloid complex (Fig. 2A) and 

to other regions known to provide dense projections to the amygdaloid complex. Overall, 

we quantified 8485 basal forebrain neurons projecting to the LA (1243 cells from n = 3 

animals), BL (795 cells from n = 4 animals), CeA (3040 cells from n = 2 animals), and the 

cBNST (3407 cells from n = 9 animals). The results showed that both the target amygdaloid 

nuclei and the cBNST received projections of varying density from each of the observed 

basal forebrain and preoptic nuclei (Fig. 1G-J), namely the VP, SI, hDB, LPO, and 

MPO/MPA.  

The LA, BL, and CeA received the densest basal forebrain input from the SI (39% 

of labeled cells for the LA, 41% for the BL, and 43% for the CeA; Fig. 1G-I). VP 

constituted the second largest source of BF innervation for the amygdaloid nuclei (26% of 

labeled cells for both the LA and the BL, and 13% for the CeA, Fig. 1G-I). The LA-

projecting neurons of the BF were overwhelmingly located (87%) in the non-hypothalamic 

BF nuclei with sparse labeling in the LPO (7%) and, MPO (6%). BF innervation of the BL 

followed a similar pattern: relatively dense SI (41%) and VP (26%) projections were 

followed by axonal projections arising from the LPO (13%), hDB (10%), and MPO/MPA 

(9%). CeA-projecting neurons were mostly located in the SI (43%). The CeA received 
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projections of relatively similar density from the MPO/MPA (17%), HDB (15%), and VP 

(13%). 

The densest projections targeting the cBNST, unlike the amygdaloid nuclei, 

originated from the MPO/MPA (average of 25.74 cells per section, 56% of labeled cells; 

Fig. 1J). This was followed by projections from the LPO (14%), hDB (12%), and SI (12%) 

with a relatively small density of connections from the VP (average of 2.57 cells per 

section, 6% of labeled cells; Fig. 1J). The majority of the cBNST-targeting neurons of the 

SI was located in the dorsal, as opposed to the ventral, portions of SI.  

We observed multiple instances of proximal labeling of red and green beads (Fig. 

1K-M), but only 2 out of 8485 neurons were co-labeled with red and green beads in their 

cell bodies in the hDB (not shown). This suggests that the axonal processes of the 

amygdala- or cBNST-targeting BF neurons rarely bifurcate to target both structures, 

however, there may exist double cBNST- and amygdaloid nuclei-targeting neurons in other 

brain regions that we have not tested. 
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Figure 1 Retrobead injections and resulting retrograde labeling in the basal forebrain and 

preoptic nuclei. A-B Injection sites targeting the amygdala nuclei (A) and the cBNST (B). 

C-F Brightfield photographs of representative injections in the LA (C), BL (D), CeA (E) 

and cBNST (F). G-J Donut charts demonstrating the percentage of LA (G), BL (H), CeA 

(I) and cBNST (J) targeting neurons in the observed basal forebrain and preoptic nuclei. 

K-M Fluorescent micrographs of retrogradely labeled neurons with red (K) or green (L) 

Retrobeads. ac, anterior commissure; ic, internal capsule. 
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Neurochemical characterization 

Neurochemical profiles of the retrogradely labeled BF neurons were identified with 

immunohistochemistry for ChAT and biomarker molecules that are localized in 

subpopulations of putative GABAergic neuron. We tested a total number of 2226 neurons 

that were labeled in the VP, SI, or hDB following Retrobeads injections into the LA (582 

neurons from n = 2 animals), BL (313 neurons from n = 2 animals), CeA (1068 neurons 

from n = 2 animals) and the cBNST (753 neurons from n = 7 animals) for PV (1062 

neurons), CB (1073 neurons), ChAT (489 neurons) or SATB1 (91 cells) immunoreactivity 

(Table V).   

Our observations showed that, overall, ChAT-immunopositive neurons constituted 

23.9% of all amygdaloid-nuclei- or cBNST-targeting basal forebrain neurons in the VP, SI 

and HDB. We observed that 1.3% of the tested BF neurons projecting to the LA, BL, CeA, 

or cBNST showed immunoreactivity for PV, while 5.5% of all tested basal forebrain 

projection neurons were CB-immunoreactive (Table V). No retrogradely labeled neuron 

was immunoreactive to SATB1. We did not observe any double labelling of PV and ChAT 

or CB and ChAT in any of the double-labelled sections we have observed. 

--- insert Table V here --- 

 When we tested amygdaloid nuclei- or cBNST-projecting neurons for ChAT 

immunoreactivity (Table V), we found that a major portion of the projecting cells were 

ChAT+ irrespective of the source or target region of the projection. The BL received the 

densest cholinergic projection, such that 46.9% of all BL-projecting BF cells in the VP, SI 

and hDB were ChAT+ (47.6% in the VP, 44.8% in the SI, 43.8% in the HDB). This was 

followed by LA- (overall 22.6%; 29.5% in the VP, 29.2% in the SI, 13.1% in the hDB), 

cBNST- (overall 18.4%; 12.5% in the VP, 18.2% in the SI, 20.0% in the hDB), and CeA 
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projecting (overall 16.3%; 15.3% in the VP, 15.7% in the SI, 20.8% in the hDB) ChAT+ 

BF neuronal subpopulations.  

Our immunohistochemical investigations (Fig. 2B-P, Table V) further revealed that 

5.25% of LA-projecting neurons and 4.1% of BL-projecting neurons in the VP were 

immunoreactive for PV, whereas 7.5% of the BL-targeting SI neurons were PV+ (Fig. 2E-

H, Fig. 3A-D, Fig. 3I-L). Interestingly, none of the tested LA-projecting SI neurons were 

PV+. We also did not observe any PV+ LA- or BL-projecting neurons in the hDB. Amongst 

the CeA-projecting BF neurons, approximately 1% of labeled cells in the SI and 1.5% in 

the hDB were immunopositive for PV, whereas no PV+ CeA-targeting neuron was 

observed in the VP. In contrast to amygdala-targeting BF neurons among which 

subpopulations of PV+ neurons existed, not a single cBNST-projecting neuron in any of 

the observed nuclei (VP, SI, and hDB) showed immunoreactivity for PV.  

When we tested the basal forebrain projection neurons labeled with Retrobeads for 

CB immunoreactivity, we found that a considerable portion of the retrogradely labeled 

cells were CB+ in several regions (Fig. 3E-L, Table V). Most significantly, CB+ neurons 

constituted 21.2% of all projections to the BL originating from the VP and 6.5% of those 

originating from the SI. Similarly, 6.8% of LA-projecting SI neurons were immunopositive 

for CB, whereas no labeled LA-projecting cell in the VP was CB+. In the hDB, a very 

small portion of LA-projecting neurons were immunopositive for CB (1.3%), but none of 

the observed BL projecting neurons were CB+. Small subsets of CeA-projecting neurons 

in all tested nuclei express CB (7.8% in the VP, 7.4% in the SI, 4.4% in the hDB). The 

cBNST-targeting CB+ basal forebrain neurons were mostly localized to the SI with CB+ 

neurons making up 5.7% of the cBNST-projecting-neurons in SI. Virtually no other 
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cBNST-projecting BF neuron was immunopositive for CB (0.0% in the VP, 0.7% in the 

hDB).  

 

 
Figure 2 Confocal microscopic images of retrogradely labeled BF neurons (green or red) 

tested for ChAT (orange), PV (magenta) and CB (cyan) immunoreactivity. Arrows and 

arrowheads respectively point to retrogradely labeled neurons immunopositive or 

immunonegative for tested biomarker molecules. A Confocal microscopic tile-scan image 

showing dense labeling of Leu-enkephalin fibers in the VP. B-D LA-targeting neurons (B) 

tested for ChAT (C). Two retrogradely labeled ChAT+ neurons (D) are enlarged in the 

inset. E-H BL-targeting neurons (E) tested for PV (F) and ChAT (G). One of the two 

labeled PV+ neurons (H) is enlarged in the inset. I-L CeA-targeting neurons (I) tested for 

CB (J) and ChAT (K), showing one CB+ and one ChAT+ retrogradely labeled neuron. M-

P cBNST-targeting neurons (M) tested for CB (N) and ChAT (O), showing one CB+ and 

one ChAT+ retrogradely labeled neuron. Scale bars: A, 200 µm; B-D, 40 µm; D inset, 20 

µm; E-H, 20 µm; H inset, 10 µm; I-L, 15 µm; M-P, 20 µm. ac, anterior commissure; hDB, 

nucleus of horizontal limb of the diagonal band of Broca; SI, substantia innominata; VP, 

ventral pallidum 
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There exists a subpopulation of non-cholinergic SATB1-positive neurons in the 

hDB (Huang et al. 2011). We observed that a significant portion of the cBNST-targeting 

non-hypothalamic basal forebrain neurons (approximately 40%) were located in the hDB. 

To explore whether these non-cholinergic SATB1+ neurons project to the cBNST, we 

tested cBNST-targeting basal forebrain neurons (n = 91) for SATB1 immunoreactivity. 

Among the cBNST-projecting neurons tested for SATB1, we did not observe any neurons 

that were immunopositive for SATB1 in the VP, SI or the hDB.  

 

 
Figure 3 Distribution and proportion of retrogradely labeled neurons in the observed basal 

forebrain nuclei. A-H Schematic maps depicting LA (A, E), BL (B, F), CeA (C, G) and 

cBNST (D, H) targeting neurons tested for PV and ChAT (A-D) or CB and ChAT (E-H). 

Labeled cells in neighboring structures are omitted. I-L Percentage of PV (magenta), CB 

(cyan) and ChAT (orange) immunopositive cells within the tested LA (I), BL (J), CeA (K) 

and cBNST (L) targeting neurons. 

 

 

 

 



   

 

63 

Computational Investigation 

Development and validation of amygdala network model to study role of VP/SI 

projection 

 We developed a biophysically model of the BLA based on known anatomy, and 

channel and synaptic neurophysiology, as detailed in methods. The model included both 

high and low adapting PNs, and two interneuron types, fast spiking PV and low-threshold 

spiking SOM and CR cells, adapted from our prior models (Feng et al., 2016 Neuroscience; 

Feng et al., 2019, eNeuro). These represent known cell types implicated in oscillatory 

dynamics in the amygdala (Feng et al., 2019, eNeuro). The three afferents relevant to our 

hypothesis were random Poisson type from the thalamocortical regions, and rhythmic 

GABAergic as well as cholinergic from the VP/SI region (Fig.1). Excitatory transmission 

was mediated by AMPA/NMDA receptors, and inhibitory transmission by GABAA 

receptors. Model synapses in all intrinsic connections also exhibited short term pre-

synaptic plasticity (STP). Excitatory synapses from PN to FSI and FSI to PN had 

depression while those from PN to LTS and LTS to PN had facilitation (Fig. 1C). Electrical 

synapses (gap junctions) were included within FSI, LTS cell populations. Local field 

potential (LFP) was calculated at the center of the network using line source 

approximation. To account for lack of afferents in the edge of the model, a shell of ‘virtual’ 

cells (Billeh, Yazan N., et al., 2020) surrounds the network. These virtual cells do not 

contribute to calculated properties such as average firing rates and LFP.  

The passive and current injection properties of single cells matched reports in the 

literature. Sample current injection plots for the five cell types are provided in Figure 4 

(see methods for values related to the properties). 
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Figure 4 Synaptic connectivity of the network, single unit activity of model cells, and 

VP/SI inputs A Schematic showing the synaptic connectivity of the network. PN denotes 

Principal Neurons. Three most populous interneuron groups of the amygdala are included: 

parvalbumin- (PV), somatostatin- (SOM), and calretinin- (CR) containing interneurons. B 

Action potential firing patterns of model amygdala neurons (PN_A, PN_C, PV, SOM, CR). 

C-D Activity of neurons constituting the external VP/SI GABAergic input in the baseline 

(C) and theta-modulated (D) cases. 
 

 

Rhythmic GABAergic and cholinergic projections from VP/SI alter BLA dynamics 

differentially. 

Results related to the firing rates of cell types, and the PSD from the LFP plots for 

the six cases highlighting our hypothesis are listed next. In the various cases described 
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below, the network configuration and parameters remain the same (see methods for 

numbers) unless specified otherwise, with only the synaptic weights between specific 

connections changed.   

Raster plots of the cell types in the network for the six different cases (Fig. 5) show 

considerable variation. For baseline case 1, where the VP/SI input was 2 Hz random 

Poisson without modulation, no rhythmicity in firing is seen among the cell types. With 

modulation added, case-2, rhythmicity begins to appear, and gets stronger in case-2 with 

ACH-High. Then it diminishes with ACH-Low in case-4, and in cases 5 (no VP/SI input, 

ACH-High) and 6 (no VP/SI and ACH-Low), theta power is completely abolished. 
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Figure 5 Single cell firing properties in experimental cases. A Example spike raster plots 

of different amygdala principal neuron and interneuron types in the 6 experimental cases. 

B Histogram plots of the firing rates of different amygdala principal neuron and interneuron 

types in the 6 experimental cases. 

 

 

To further characterize the modulation of theta by the amygdala network, we 

calculated the PSD of the local field potential. PNs are the primary contributors to the LFP 

and so the PSD plots reflect the power contributed to the specific bands by synchronous 

firing among the PNs. As expected, without rhythmicity in the VP/SI inputs, theta was 
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absent in the PSD for case 1 (panels A2, A3). However, with the introduction of 

rhythmicity in the VP/SI input in Case 2, theta is evident in the PSD in the baseline ACH 

case (panel A3). Higher cholinergic tone (ACH=3, Case 3), more than doubled the theta 

power (panel A3), and a lower cholinergic tone (ACH=0, Case 4) decreased it to baseline 

levels. We then investigated the effect of removal of the rhythmic component of the VP/SI 

input at the high (ACH=2; Case 5) and low (ACH=0) levels. This decreased the theta power 

considerably and brought the theta power to baseline levels in both cases 5 and 6. This 

indicates that ACH had no effect on power in the theta band in the absence of the theta 

rhythm in VP/SI input. 

 
 

Figure 6A Power spectrum of the amygdala neuronal population. The resulting average 

population power spectra of the 6 experimental cases over 10 network instantiations.  

 

We next explored the entrainment of the various cell types to the amygdalar theta 

using the Hilbert transform (see methods). As expected, both types of PNs spiked at the 

trough of theta when inhibition waned (Fig. 6-left; Feng et al., 2019 eNeuro). The raster 

plots in the right panels of Fig. 6 provide an estimate of the temporal spread of entrainment. 
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PVs cells spiked about 450 after the trough consistent with the fact that they received most 

of their drive from PNs. The SOM cells follow them and spike around the peak of the theta 

rhythm, and CR cells seem to spike in between PV and SOM cells.    

Finally, the VP/SI input did not entrain to theta since the LFT theta rhythm had 

varying frequencies through time due to the interactions between the various cell types 

(Fig. 6B, bottom). An analysis of the theta cycles in the LFP revealed that the frequencies 

and amplitudes of varied considerably, with frequency variation of 8±4 Hz. This results in 

the VP/SI afferents, with their narrow-band frequency of 8±1 Hz (left-bottom panel of Fig. 

6) not exhibiting any phase preference. 
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Figure 6B Theta phase-couplings of different principal neuron and interneuron groups. 

Plots showing the firing patterns and theta-phase precession/succession tendencies of the 

modeled amygdala neuronal subpopulations. 

 

 

We explored the phase preferences of the amygdala cell types further using cross-

correlation and coherence measures (Fig. 7, top and bottom rows). Cross-correlation 

estimates revealed that the PNs precede the PV, SOM, and CR cells by 4.5, 6 and 6 ms, 

respectively. Also, the PV cells were found to precede the SOM cells by 3 ms.  
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Figure 7 Coherence of different amygdala neuronal units. A. Cross correlation of units in 

the baseline and theta-modulated VP/SI + high ACh cases (2 cases to be graphed in the 

same plot). 

 

 

 

The theta rhythm from VP/SI is modulated by the microcircuitry in the amygdala 

as shown in Figures 6 and 7. We explored the relative contributions of each cell type to 

this modulation by inactivating different cell types sequentially and documenting the effect 

on the peak power in LFP theta. Since the contribution to the LFPs is almost solely from 

PNs, they were not inactivated. Instead, in each inactivation experiment involving other 

cell types, we adjusted the thalamo-cortical input to PN cells to restore PN firing rates to 

baseline levels with each inactivation, for a fair comparison. For instance, when 

inactivating the PV cells, the thalamo-cortical firing rates to PNs were adjusted to bring 

their average firing rate of PNa and PNc cell types to baseline levels of 0.45 and 0.6 Hz, 

respectively. Results from this model experiment runs are shown in Figure 8, with the inset 

table listing the firing rates of the various cell types for the different cases. The PV cells 

contributed the most to theta power. This was perhaps a consequence of the afferent 

connectivity from VP/SI converging primarily onto PVs (Fig. 4), forming a key pathway 

for amygdala to entrain to theta. On the other hand, SOM cells were found to contribute 
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minimally to theta. Paradoxically, inactivation of CR+ cells increased theta compared to 

baseline levels perhaps due to increased activity of PV cells caused by the disinhibitory 

effect. 

 

 

 

Figure 8 Ablation experiments, removing cell types sequentially to check their 

contributions to peak theta power in case 3 (VP/SI ACh high). Cases A-D: peak theta 

power at baseline (blue), and inactivation of PV (orange), SOM (green) and CR+ (red) 

cells, respectively. 
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Discussion  

We show that there are at least two different subpopulations of non-cholinergic projection 

neurons in the VP/SI targeting different amygdaloid complex subregions. PV+ putative 

GABAergic and CB+ putative GABAergic or glutamatergic projection neurons did not 

co-express ChAT, but they made up approximately 25% of BL-targeting SI neurons and 

14% of BL-targeting SI neurons. Moreover, we observed that the BL-targeting basal 

forebrain neurons in several subnuclei were less frequent compared to original reports of 

up to 3:1 (Carlsen et al. 1985). Specifically, in VP and SI, we observed that 

approximately 45-48% of BL-targeting neurons are ChAT+, suggesting an approximate 

1:1 ratio of cholinergic to non-cholinergic projection neurons. Another study using 

Retrobeads (Aitta-aho et al. 2018) had also found that the cholinergic to non-cholinergic 

ratio among the BL-projecting nucleus basalis of Meynert neurons in mice was closer to 

64:36, which amounts to less than 2:1, instead of 3:1. 

The proportions of PV+ projection neurons that we report here are within the range 

of previous works suggesting that approximately 4-13.1% of the amygdalopetal VP 

neurons targeting the BL are PV+ (Mascagni and McDonald 2009). We found that, in the 

basal forebrain, approximately 4.1% of BL afferents from the VP and 7.5% of those from 

the SI arises from PV+ putative GABAergic neurons.  Thus, we confirm and replicate the 

finding that PV+ putative GABAergic VP/SI neurons project to the amygdala, and we use 

this verified information to build our computational model of VP/SI-BLA innervation. On 

the other hand, we did not observe a single instance of PV+ projection neurons targeting 

the CeA or the cBNST. 
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We report a novel CB+ VP neuronal population projecting primarily to the BL 

(approximately 20% of VP projections), and to a lesser extent to the CeA. (7%). These 

CB+ neurons were observed to be ChAT- and thus present a putative glutamatergic or 

GABAergic population of projection neurons. Up to 95% of CB+ BF neurons were shown 

to be GAD-immunoreactive (Gritti et al. 2003) in the basal forebrain. Therefore, it is 

possible that only a small subpopulation of amygdala projecting CB+ neurons GABAergic, 

while the rest are likely to be glutamatergic akin to cortically projecting CB+ BF neurons 

(Gritti et al. 2003). vGluT2+ neurons were also reported to project to the amygdala 

(McKenna et al. 2021), but the molecular properties of these neurons are unknown.  

Nevertheless, we show that putative GABAergic PV+ or glutamatergic CB+ neurons 

constitute a significant portion of the non-cholinergic VP-amygdala projections. 

Unlike the CB+ VP projection neurons selectively targeting the BL and to a lesser 

extent the CeA, CB+ projection neurons in the SI were found to innervate all studied 

amygdaloid complex substructures uniformly. The SI projections to the LA, BL, CeA, and 

cBNST alike had a CB+ component ranging from 5.7% to 7.4%. These neurons constitute 

another novel putative glutamatergic (Gritti et al. 2003) pathway from the BF to the 

amygdaloid complex. 

No SATB1 immunoreactivity was observed among the long-range projection 

neurons targeting the cBNST. This suggests one of two options: that either the 

predominantly non-cholinergic SATB1+ neurons in the BF, specifically located in the hDB 

(Huang et al. 2011), are local interneurons, or that SATB1 positive neurons do not project 

to the BNST. These two possibilities should be rigorously tested before any conclusions 

can be drawn. 
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Amygdala Network Model  

Despite the documented rich diversity of cholinergic, GABAergic, and 

glutamatergic BF innervation of the amygdaloid complex we have presented here, and 

others have presented in previous studies (Carlsen et al. 1985; Mascagni and McDonald 

2009; Mcdonald et al. 2011; Agostinelli et al. 2019; McKenna et al. 2021), the functions 

of the non-cholinergic BF innervation of the amygdala are currently unknown. We set out 

to test the role of the GABAergic BF-amygdala pathway and its interaction with the 

cholinergic portion of this innervation on the functioning of the BLA local circuitry by 

building a biophysically realistic amygdala network model. 

 

Based on our tract-tracing studies, the GABAergic afferents from VP/SI preferentially 

contact the PV cells (Fig. 4). Our computational model predicts that this biased 

connectivity causes the PV cells to entrain to the theta rhythm of the afferents (Fig. 6B). 

The PV cells, in turn, entrain the PNs to the rhythm by providing them with windows of 

opportunity to fire. Since the excitatory afferents to the PV cells come largely from the 

PNs, and the PN-PV interactions modulate this rhythm, the resulting LFP reflects broad-

band theta (Fig. 6A).  

 

At the microcircuit level, the broad-band theta rhythm arises from a combination of 

factors that form predictions from the model. One is the need for a weaker PN-PV 

synapse (see methods) so the PING mechanism of gamma generation (Feng et al., 

eNeuro, 2019) does not overwhelm the entrained theta rhythm. Another is the potential 

theta-gamma coupling due to PV cells inhibiting the SOM and CR+ cells.   
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Fig. 6 shows the phase preferences of firing for the various cell groups. The VP/SI 

afferent has a narrow-band theta frequency of 8 Hz with jitter (ISI of 125 ± 25 ms) and so 

does not have a phase preference in the broad-band LFP theta (Fig. 6B, bottom left). This 

is because the PN-PV interactions modulated LFP theta, as described earlier. In contrast, 

all the amygdala cell types entrained to LFP theta in specific ways. The PNs fired at the 

trough of the inhibition, and the PVs followed with a 4.5 ms lag and SOMs with a 6 ms 

lag (Fig. 7). This suggests that the PING mechanism may be involved in the generation 

and modulation of frequency via feedback loops involving these two cell types. The CR+ 

population inhibits both the PV and SOM populations providing a hierarchical level of 

modulation, possibly via other afferents to the CR+ population. 

 

The phase preference of different cell types in a network model of the hippocampus has 

been shown to be dependent on the afferents (Mysin et al. (2019). In particular, they 

mention that theta will be present even without the other afferents, and that any single 

afferent from possibly many unknown ones, could disturb the relative phase 

relationships.  The phase preferences we predict in the amygdala network model (Fig. 6) 

assumes the afferents to be limited to those from the thalamocortical and VP/SI regions. 

This suggests that the computational model could serve as a test-bed to investigate 

potentially unknown afferents during a particular brain state if experimental data related 

to the phase preferences of the amygdala cells are known, as in the hippocampus. 
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Conclusions  

• GABAergic projections originating from the basal forebrain targeting subcortical 

structures required for different types of memory processes possess similar 

anatomical features.  BF cholinergic innervation of the amygdala have been studied 

extensively both in terms of its anatomical specifications and its physiological and 

behavioral functions (Woolf and Butcher 1982; Carlsen et al. 1985; Muller et al. 

2011; Unal et al. 2015a; Gielow and Zaborszky 2017; Lee and Kim 2019; Kellis et 

al. 2020; Crimmins et al. 2022; Bratsch-Prince et al. 2023), and an increase in 

cholinergic tone in the BLA was recently shown to be associated with increased 

BLA theta activity (Bratsch-Prince et al. 2023). However, the non-cholinergic 

(putative GABAergic and glutamatergic) projections of the VPSI to the amygdaloid 

complex may be numerically underestimated and functionally underemphasized 

and may have overarching roles in regulating amygdalar functions. Here we 

assessed one such oscillatory function in silico. 

• The GABAergic septohippocampal projection leads and modulates theta and supra-

theta oscillations in the hippocampus (Hangya et al. 2009; Király et al. 2023). Here, 

we show in a biophysically realistic network model that structure may guide 

function in the larger basal forebrain GABAergic projection system: GABAergic 

VPSI projections to the amygdala may serve a similar purpose of leading the 

amygdala theta oscillations, which are implicated as causal actors in fear learning 

and memory (Seidenbecher et al. 2003; Lesting et al. 2011; Stujenske et al. 2014; 

Davis et al. 2017). 
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• Our results also present a novel theoretical basis for observations documenting the 

role of VP/SI GABAergic mechanisms in depression-related behaviors (Skirzewski 

et al. 2011; Akmese et al. 2023), aversion (Stephenson-Jones 2019; Stephenson-

Jones et al. 2020; Farrell et al. 2021), and emotional memories (Skirzewski et al. 

2011; Akmese et al. 2023). VP/SI GABAergic manipulations may influence these 

processes, at least partly, through their innervation of the amygdala and their effects 

on local amygdala dynamics. 

• The results of our amygdala network model point to several hypotheses that should 

be tested in vivo: 

o The BF GABAergic projection system may carry out a single, common 

function in all the limbic areas that they target, contributing to local network 

oscillations and the associated memory processes. 

o VP/SI GABAergic and cholinergic innervation of the amygdala may be 

critical for amygdala oscillations (including theta and theta-modulated 

gamma rhythms, which were shown to be crucial for amygdala-dependent 

emotional learning and memory processes) 

o Based on the unit coherence changes and neuronal group ablation results 

(showing critical involvement of subpopulation of amygdala neurons -say 

X and Y- in terms of theta: 

▪ Normal functioning of amygdala neuronal subpopulations X and Y 

may be required for theta-rhythmic oscillations produced by the 

presence of theta-modulated VP/SI inputs in the amygdala, and the 
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groups X and Y may be required in turn for amygdala-dependent 

memory formation and Pavlovian association processes.  

▪ Similarly, deficits in either the VP/SI GABAergic projections to 

the amygdala, or functional alterations in amygdala neuronal 

groups X and Y may possibly underlie amygdala-related problems 

in fear learning or fear extinction.  



   

 

79 

Tables 

Table I Primary antibodies  
Molecule Host species Dilution Source, catalogue # Immunogen 

CB Mouse 1:1000 Swant, 300 Purified calbindin 

CB Rabbit 1:1000 Swant, CB38 Recombinant rat calbindin D-

28k 

ChAT Goat 1:500 Chemicon (Merck), 

ab144p 

Human placental ChAT 

Leu-

enkephalin 

Rabbit 1:1000 Abcam, ab22619 Synthetic peptide 

corresponding to Leu-

enkephalin conjugated to 

keyhole limpet haemocyanin 

PV Rabbit  1:2000 Abcam, ab11427 Purified parvalbumin 

PV Rabbit 1:5000 Swant, PV27 Purified parvalbumin 

SATB1 Goat 1:1000 Santa Cruz, sc-5989 N-terminus of human SATB1 

Table II Synaptic connectivity in the network 

  Overall connectivity   Unidirectional   Bidirectional 

PN to PN 2%  1.96%  0.04% 

PN to PV 26.82%  11.24%  15.58% 

PN to SOM 31.19%  29.17%  2.01% 

PN to CR 18.43%  16.41%  2.02% 

PV to PN 52%   36.42%   15.58% 

PV to PV 22.92%   17.41%   5.50% 

PV to SOM 9.80%   9.80%   -- 

SOM to PN 6.57%  4.55%  2.01% 

CR to PN 11.59%   9.57%   2.02% 

CR to PV 29.70%   29.70%   -- 

CR to SOM 75.25%   75.25%   -- 



   

 

 

 Table III Passive properties and conductance parameters for model cell types 

 

PV+ 

interneuron 
 Type A Principal neuron  Type C Principal neuron  SOM+ interneuron  CR+ interneuron 

V-rest (mv) -70.0  -70.4  -70.3  -70.0  -60.1 

Input 

resistance(MΩ) 
371  127  128  290  321 

Time Const. 

(ms) 
20  32  32  19  20 

 
       

 
  

 

 
soma dendrite  soma apical distal  soma apical distal  soma dend1 

dend2  soma dend1 
dend2 

Cm (µF/cm2) 1 1   2.4 2.4 2.4   2.4 2.4 2.4   1.3 1.3 
1.3 

  1 1.3 
1.3 

Ra (Ωcm) 3375 150   150 150 150   150 150 150   150 150 
150 

  150 150 
150 

Conductance 

(S/cm2) 
 

             
   

 
   

    

gNabar 0.035 0.01  0.015 0.015 0.015  0.045 0.015 0.015  -- -- --  -- -- -- 

gKdrbar 0.008 0.003  0.002 0.002 0.002  0.002 0.002 0.002  0.026 0.026 0.026  0.03 0.03 0.03 

gLeak 1 1  2.50E-05 4.71E-05 4.71E-05  2.50E-05 4.71E-05 4.71E-05  6.70E-05 6.70E-05 
6.70E

-05 
 6.00E-05 6.00E-05 6.00E-05 

gNapbar -- --  0.00056 0.00045 0.00056  0.000555 0.000444 0.000555  0.0011 0.0011 
0.001

1 
 0.0014 0.0014 0.0014 

gHdbar -- --  1.50E-05 1.50E-05 1.50E-05  1.50E-05 1.50E-05 1.50E-05  -- -- --  -- -- -- 

gCabar -- --  5.50E-04 5.50E-04 5.50E-04  5.50E-04 5.50E-04 5.50E-04  -- -- --  -- -- -- 

gMbar -- --  0.00224 0.001792 0.00224  0.00224 0.001792 0.00224  0.0015 0.0015 
0.001

5 
 0.0015 0.0015 0.0015 

gsAHPbar -- --  0.05 -- --  0.002 -- --  -- -- --  0.0006 0.0006 0.0006 

gKapbar -- --  0.002 -- 0.002  0.002 -- 0.002  -- -- --  -- -- -- 

gNat -- --  -- -- --  -- -- --  0.08 0.08 0.08  0.09 0.09 0.09 

gCal -- --   -- -- --   -- -- --   -- -- --   0.02 0.02 0.02 

80
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Table IV Kinetic parameters of current channels 

Current 
Gating 

Variable 
α β 𝒙∞ τx (ms) 

INa
1
 

p=3 
−0.4(𝑉 + 30)

exp[−(𝑉 + 30)/7.2] − 1 
 

0.124(𝑉 + 30)

exp[(𝑉 + 30)/7.2] − 1 
 

𝛼

𝛼 + 𝛽
 

0.6156

𝛼 + 𝛽
 

q=1 
−0.03(𝑉 + 45)

exp[−(𝑉 + 45)/1.5] − 1 
 

0.01(𝑉 + 45)

exp[(𝑉 + 45)/1.5] − 1 
 

1

exp[(𝑉 + 50)/4] + 1
 

0.6156

𝛼 + 𝛽
 

IKdr
1
 

p=1 exp[−0.1144(V + 15)] exp[−0.0801(V + 15)] 
1

exp[(−𝑉 − 15)/11] + 1
 

50 ∗ 𝛽

1 + 𝛼
 

IH
2

 

q=1 exp[0.0832(V + 75)] exp[0.0333(𝑉 + 75)] 
1

exp[(𝑉 + 81)/8] + 1
 

𝛽

0.0081(1 + 𝛼)
 

IKM
3
 

p=2 
0.016

exp[−(𝑉 + 52.7)/23] 
 

 

0.016

exp[(𝑉 + 52.7)/18.8] 
 

1

exp[(−𝑉 − 52.7)/10.3] + 1
 

1

𝛼 + 𝛽
 

ICa
3
 

p=2 ― ― 
1

exp[(−𝑉 − 30)/11] + 1
 

2.5

exp [
−(𝑉 + 37.1)

32.3
] + exp [

(𝑉 + 37.1)
32.3

]
 

q=1 ― ― 
1

exp[(𝑉 + 12.6)/18.9] + 1
 420

 

INap
4 p=1 ―

 

―

 

1

exp[(−𝑉 − 48)/5] + 1
 2.5 + 14 ∗ exp[−|𝑉 + 40|/10] 

IsAHP
3
 

p=1 
0.0048

exp[−5 log10([𝐶𝑎]𝑖2) − 17.5]
 

0.012

exp[2 log10([𝐶𝑎]𝑖2) + 20]
 

𝛼

𝛼 + 𝛽
 48 

INa1.2
5 

p=3 
−0.182(𝑉 + 30)

exp[−(𝑉 + 30)/7] − 1 
 

0.124(𝑉 + 30)

exp[(𝑉 + 30)/7] − 1 
 

𝛼

𝛼 + 𝛽
 

1

𝛼 + 𝛽
 

q=1 
−0.024(𝑉 + 50)

exp[−(𝑉 + 50)/5] − 1 
 

0.0091(𝑉 + 75)

exp[(𝑉 + 75)/5] − 1 
 

1

exp[(𝑉 + 72)/6.2] + 1
 

1

𝛼 + 𝛽
 

INa1.6
5 

p=3 
−0.182(𝑉 + 43)

exp[−(𝑉 + 30)/6] − 1 
 

0.124(𝑉 + 43)

exp[(𝑉 + 30)/6] − 1 
 

𝛼

𝛼 + 𝛽
 

1

𝛼 + 𝛽
 

q=1 
−0.024(𝑉 + 50)

exp[−(𝑉 + 50)/5] − 1 
 

0.0091(𝑉 + 75)

exp[(𝑉 + 75)/5] − 1 
 

1

exp[(𝑉 + 72)/6.2] + 1
 

1

𝛼 + 𝛽
 

INaT
6 

p=3 
𝑅𝑎(𝑉 + 15)

1 −  exp[−(𝑉 + 15)/7.2]
 

𝑅𝑏(−𝑉 − 15)

1 −  exp[−(−𝑉 − 15)/7.2]
 

𝛼

𝛼 + 𝛽
 

1

𝛼 + 𝛽
 

q=1 
𝑅𝑑(𝑉 + 30)

1 −  exp[−(𝑉 + 30)/1.5]
 

𝑅𝑔(−𝑉 − 30)

1 −  exp[−(−𝑉 − 30)/1.5]
 1 +  

1

exp[(𝑉 + 35)/4]
 

1

𝛼 + 𝛽
 

ICaL
6 p=2 

15.69(−𝑉 + 81.5)

exp[−(𝑉 + 81.5)/10] − 1 
 0.29 ∗  exp[−

𝑉

10.86
] 

𝛼

𝛼 + 𝛽
 

1

𝛼 + 𝛽
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Table V Number and proportion of retrogradely labeled PV+, CB+  and ChAT+ 

neurons  
 

 

 Cells tested for  

PV 

 Cells tested for   

CB 

 Cells tested for  

ChAT 

Target Locatio

n  

N PV

+ 

(%

) 

 N CB

+ 

(%)  N ChAT+ (%) 

             

LA VP 97 5 5.2  65 0 0.0  61 18 29.5 

 SI 31 0 0.0  73 5 6.8  24 7 29.2 

 hDB 89 0 0.0  80 1 1.3  61 8 13.1 

             

BL VP 49 2 4.1  47 10 21.3  42 20 47.6 

 SI 40 3 7.5  46 3 6.5  29 13 44.8 

 hDB 18 0 0.0  26 0 0.0  16 7 43.8 

             

CeA VP 118 0 0.0  90 7 7.8  59 9 15.3 

 SI 304 0 0.0  270 20 7.4  70 11 15.7 

 hDB 65 1 1.5  68 3 4.4  24 5 20.8 

             

cBNST VP 16 0 0.0  6 0 0.0  16 2 12.5 

 SI 127 0 0.0  157 9 5.7  22 4 18.2 

 hDB 108 0 0.0  145 1 0.7  65 13 20.0 

             

Total  1062 14 1.3  1073 59 5.5  489 117 23.9 
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Abstract— Automation of the process of developing biophysical conductance-based 

neuronal models involves the selection of numerous interacting parameters, making the 

overall process computationally intensive, complex, and often intractable. A recently 

reported insight suggested natural grouping of currents into modules associated with 

specific neurocomputational properties, and incorporation of this insight is shown to make 

the model development more tractable. Specifically, we show how the proposed grouping 

of currents into modules facilitates the development of a semi-automated pipeline for the 

biophysical modeling of single neurons. The pipeline is intentionally designed to 

incorporate high-level user input to narrow the parameter space and generate higher fidelity 

models. We also expand the current modules reported previously to include spike 

frequency adaptation and bursting characteristics.  
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INTRODUCTION 

The question of how single neurons contribute to information processing and ultimately to 

behavior has fascinated researchers for decades and is central to neuroscience research [1; 

2]. The rich dynamic features of neurons make it challenging to unravel their contribution 

to such information processing. For instance, neurons with complex morphology such as 

cortical pyramidal neurons have been shown to be capable of performing linear and 

nonlinear computations in their active dendrites [3], but it is not clear how the computations 

in dendrites modulate the action potential at the soma, the primary output of the neuron. 

Enabling this dendritic computation are diverse extrinsic and intrinsic afferents that 

impinge on a neuron in vivo, via complex configurations of excitatory and inhibitory 

synapses together with various intrinsic conductances distributed non-uniformly along the 

dendritic tree. Adding to all this are natural and activity-dependent changes in neurons and 

circuits that include the following: properties of the current channels vary widely, e.g., four 

to five-fold variations in maximal conductances among similar neurons in the same subject 

[4], short- and long-term experience-dependent plasticity continually changes 

neuron/synapse properties and reorganizes micro-circuit configurations, and these 

properties can be dramatically altered via neuromodulation [5]. Concurrent with this 

evolving understanding of the in vivo characteristics of single neurons, computational 

models have continued to improve as we briefly review next.  

 

Computational models of single neurons utilize a variety of morphologies depending on 

the specific application, ranging from single (1) and reduced (<10) to detailed (>1000) 

compartments, and to cascade and black-box models [1]. And the mathematical 
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descriptions of such compartmental models have utilized integrate-and-fire, resonate-and-

fire, Izhikevich, and Hodgkin-Huxley formulations [6; 7]. The computational model 

features are then tuned to capture a subset of the neurocomputational properties of neurons 

relevant to the application. At the basic level, these neurocomputational properties include 

passive properties of resting membrane potential, input resistance and time constant, and 

current injection responses in the form of frequency-current (F-I) curves [6; 7]. Other 

properties include adaptation, bursting, and oscillatory potentials including low- and high-

threshold oscillations.  

 

In the present paper we focus on biophysical conductance-based models using the 

Hodgkin-Huxley formation that can incorporate neurophysiological details that may be 

relevant for network applications that require such details, i.e., modeling neuronal 

oscillations [8]. As cited, such network models typically use single cells with 1 to 5 

compartments to limit both computational overheads and parametric uncertainties [9]. 

However, it is important that the reduced order model neuron possesses key 

neurocomputational properties including passive properties, current injection responses as 

well as possibly complex oscillatory dynamics. We had previously proposed and 

successfully tested the hypothesis that in a single neuron, sets of currents may be organized 

as modules that are responsible for implementing specific neurocomputational properties 

such as passive properties (resting membrane potential (RMP), time constant and input 

resistance), sub-threshold oscillations, and various spike waveforms that include tonic, 

adapting and bursting features [10]. Furthermore, the hypothesis naturally suggested an 

approach, termed the ‘segregation method’, that was shown to facilitate the selection of 
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single cell model parameters and to simplify the modeling of single cells. This makes the 

approach attractive to automation of the modeling of single neurons, as we suggest below. 

 

The rich and complex properties displayed by neurons makes modeling the cellular 

behaviors of neurons challenging. This makes manual tuning tedious for the parameters 

related to the current kinetics (e.g., maximal conductances) of such neurons. 

Consequently, automated strategies for modeling single cells using biological data exist 

for specific cell types including simplified spiking models [11] and those with numerous 

compartments, e.g., [12; 13], but are scarce for general neuron types even at the single 

compartment level (but see [14]). In the present paper, we explore an automation scheme 

Automated Cell Tuner (ACT) to design a broad range of single neuron computational 

models using the insight from the segregation method of organizing currents into specific 

modules for each dynamic features of the neuron. Specifically, the approach links distinct 

current modules to specific neural signatures and provides a method that utilizes insights 

to simplify the hand-tuning process by reducing interactions between the current modules 

[10].  

 

Furthermore, we extended the biophysical-based segregation method [10] to also include 

another neurocomputational property of spike frequency adaptation and bursting. We 

illustrate the proposed scheme using an example of a pyramidal neuron in the CA3 region 

of the hippocampus that responds to stimuli with a rapidly adaptive burst waveform that 

then reduces to tonic spiking or to a continuously bursting phenotype, both of which are 

commonly found neural signatures [15]. We then show that such a waveform output of 
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CA3 neurons plays an important role in the generation of theta oscillations in the model 

hippocampal network. We will make the automated pipeline for modeling publicly 

accessible to the neuroscience community to facilitate designing single neuron models.  
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METHODS 

Models of single neurons were developed using experimental parameters from our 

collaborators and the literature [10], and implemented using the NEURON 7.4 simulator 

[16] with a fixed time step of 25 µs. We first describe a brief overview of the mathematical 

underpinnings of both single cell dynamics and of the segregation approach [10]. That is 

followed by the procedure used for the development and validation of the proposed pipeline 

for the biophysical modeling of a class of neurons. 

 

Mathematical equations for voltage-dependent ionic currents. 

The dynamics for each compartment (soma or dendrite) followed the Hodgkin-Huxley 

formulation [15] in eqn. 1, 

 

𝐶𝑚𝑑𝑉𝑠

𝑑𝑡
= −𝑔𝐿𝑒𝑎𝑘(𝑉𝑠 − 𝐸𝐿𝑒𝑎𝑘) − 𝑔𝑐(𝑉𝑠 − 𝑉𝑑)  − ∑ 𝐼𝑐𝑢𝑟,𝑠

𝑖𝑛𝑡 − ∑ 𝐼𝑐𝑢𝑟,𝑠
𝑠𝑦𝑛

+ + 𝐼𝑖𝑛𝑗   

(1) 

where 𝑉𝑠/𝑉𝑑 are the somatic/dendritic membrane potential (mV), 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡  and 𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
 are the 

intrinsic and synaptic currents in the soma, 𝐼𝑖𝑛𝑗 is the electrode current applied to the soma, 

𝐶𝑚 is the membrane capacitance, 𝑔𝐿𝑒𝑎𝑘 is the conductance of the leak channel, and 𝑔𝑐 is 

the coupling conductance between the soma and the dendrite (similar term added for other 

dendrites connected to the soma). The intrinsic current 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 , was modeled as 𝐼𝑐𝑢𝑟,𝑠

𝑖𝑛𝑡 =

𝑔𝑐𝑢𝑟𝑚𝑝ℎ𝑞(𝑉𝑠 − 𝐸𝑐𝑢𝑟), where 𝑔𝑐𝑢𝑟 is its maximal conductance, m its activation variable 

(with exponent p), h its inactivation variable (with exponent q), and 𝐸𝑐𝑢𝑟 its reversal 

potential (a similar equation is used for the synaptic current 𝐼𝑐𝑢𝑟,𝑠
𝑠𝑦𝑛

 but without m and h). 

The kinetic equation for each of the gating variables x (m or h) takes the form but without 
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m and h. The kinetic equation for each of the gating variables x (m or h) takes the form 

 

𝑑𝑥

𝑑𝑡
=

𝑥∞(𝑉,[𝐶𝑎2+]
𝑖
)−𝑥

𝜏𝑥(𝑉,[𝐶𝑎2+]𝑖)
                 (2) 

where 𝑥∞ is the steady state gating voltage- and/or Ca2+- dependent gating variable and 

𝜏𝑥 is the voltage- and/or Ca2+- dependent time constant. The equation for the dendrite 

follows the same format with ‘s’ and ‘d’ switching positions in eqn. 1. The procedure for 

selecting the channel currents and their model parameters are described next using an 

approach we proposed recently. 

 

Segregation hypothesis for single cell design 

The segregation hypothesis, in brief, states that distinct current modules, with activation 

functions segregated on the voltage axis, implement different neurocomputational 

properties [10]. The implementation of the hypothesis for single cell modeling is illustrated 

in Box 1. For illustrative purposes, consider the case of a tonic spiker. The segregation of 

the activation and inactivation functions is shown in cartoon form in Fig. 1, using two 

modules: passive module (resting membrane potential Vrest, time constant m, and input 

resistance Rin) and spiking module. In this case, leak, and the hyperpolarization-activated 

cation current H are responsible for passive properties, and together constitute the passive 

module. Similarly, transient sodium Nat and delayed rectifier Kdr currents (together with 

the leak current) set the spiking properties as a spiking module. The activation functions 

are segregated to prevent overlap, i.e., the currents of each module start on the voltage axis 

only after the zone of action of the module to its left. Cut-off values for the gating variables 

are selected to be within reported ranges of V1/2 values [6].  
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Development of pipeline for the Automated Cell Tuner (ACT) 

The pipeline for the ACT is shown schematically in Figure 2, and outlined in steps as 

follows: (i) The user provides biophysical data related to the neuron. The data includes 

neuronal type, morphology, conductances present in the soma, axon, and dendrites, and 

their kinetics, passive properties (resting membrane potential Vrest, time constant , and 

input resistance Rin), current injection responses (frequency-current, F-I curve), and 

parameters related to other characteristics such as adaptation, bursting, and oscillatory 

potentials. If specifics related to any of the parameters are not known, they are retrieved 

from a library of cell models with parameters, developed from papers and databases. (2) 

Two training datasets are developed using ranges for selected neuronal parameters. In the 

present paper, we assume that only maximal conductances of the currents are tuned. 

However, the pipeline provides provision to tune the current kinetics such as half-

activation voltage V1/2 and slope k (see Fig. 1). The parameters are sampled randomly 

from within known ranges (e.g., see Table 2), and then passed to two simulators. One of 

the simulators uses the original activation/inactivation functions of the currents and 

accordingly, that pipeline is termed pipeline-original, since it ‘estimates’ optimal 

parameters and current injection levels of the predicted cell model. The other simulator 

uses the segregated activation/inactivation functions of the currents, and that pipeline is, 

similarly, termed pipeline-segregated. The simulator will then generate a training dataset 

for use by a machine learning model. The dataset development involves sampling the 

parameters over the ranges and providing them sequentially to the simulator that then 

generates voltage traces for specified current injection profiles. (3) This training dataset is 



 

99 
 

 

then used to obtain an ‘inverse’ model, i.e., to predict the neuronal parameters and current 

injection profile given the voltage trace, employing a machine learning (ML) model. The 

pipeline is designed to use any ML architecture, and here we report results from random 

forest, fully-connected, and CNN architectures. Once trained fully, the pipeline is 

designed to provide the user with a computational model of the neuron in the particular 

software package selected, e.g., NEURON. 

 

The training follows the standard procedure for the pipeline termed pipeline-original (using 

unchanged activation/inactivation functions) and this pipeline estimates/predicts all the 

parameters of the model cell simultaneously. However, for the pipeline-segregated (with 

segregated activation/inactivation functions), the pipeline has two stages. In the first 

‘coarse’ stage, the neuronal parameters are estimated sequentially for each module, starting 

from the left (see Fig. 1) using a larger range of search space for each parameter of that 

module. For instance, in the cartoon figure 1, the passive module parameters are 

determined analytically prior to the simulation stage, and then the spiking parameters and 

so on. And in a second step, the estimation process begins with the all the parameters 

assembled from the coarse step (e.g., passive + spiking parameters) and then tuning them 

together around a narrower user-defined range of values around that coarse parameter set.  

 

Library of neuronal morphology, membrane, current channel, and synaptic properties 

A collection of neuronal properties relevant to the model development are available for 

standard cell types from existing databases, e.g., NeuronDB [17]. Also, information about 
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how to retrieve them from databases is provided to the user. For this study we procured a 

small library such sources, kinetics outlined in Table 3. 

 

 

Machine learning architectures and Input design 

ACT’s primary machine learning architecture was Random Forest. Random Forests are a 

type of ensemble learning technique that uses multiple decision trees to compute an average 

prediction. Due to the spectrum of conductance values possible, this was framed as a 

regression task. While providing a raw voltage trace as input is possible, a reduced order 

dataset in the form of summary statistics were computed.   

At each stage of segregation, the user can specify which summary stats to use when training 

the pipeline. An example set would be as follows: 

1. ARIMA stats (useful only for HTO and LTO) 

2. Number of spikes 

3. Spike times (first n, specified by the user). Zero was used in place of a spike time 

if one of the first n spikes did not exist. 

4. Interspike interval 

5. Average spike height 

6. Average spike trough 

7. Frequency of oscillations (HTO/LTO) 

8. Amplitude of oscillations (HTO/LTO) 

9. Mean voltage potential 

 

User interaction with the pipeline.  

To use the pipeline the user must specify a set of parameters in the configuration file. 

This includes: 

1. Model template 

2. Desired passive properties 

3. Simulation parameters (initial voltage, current clamp duration) 

4. The set of target user traces for the model to learn 
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5. Amp values that the target user trace was subjected to 

6. Parameters to be adjusted (conductance names, and range values that are 

acceptable) 

7. Type of machine learning algorithm to use 

8. Segregation stages 

 

Each segregation stage is separate from one another. This provides the user the ability to 

tune each stage differently, and incrementally. For example, stages where cell spiking 

does not occur, e.g, LTO/HTO modules, it is possible to omit spike-related summary 

statistics and include ARIMA statistics. The opposite is true for cases where spiking 

occurs. In the event a segregation stage does not perform well enough, the user is able to 

re-run the stage given modified parameters instead of running the whole pipeline again. 

Parameters such as input ramps (for slowly increasing current injection), machine 

learning technique, number of epochs and the re-learning of prior parameters on a tighter 

bound can also be specified here. 

 

 

Example cases to illustrate functioning of the ACT pipelines.  

We consider four example case neurons to illustrate the proposed automated scheme. 

Two are related to the neurocomputational property of adaptation and bursting, that was 

not considered in our earlier paper [10]. The other two are representative neurons that 

exhibit four neurocomputational properties: spiking, adaptation, and a tonic spiker, as 

well as oscillatory potentials of low-threshold and high-threshold types, involving 

complex dynamics. The channels and current densities of the tonic spiker and adapting 

cell were from model LA neurons that were designed to match biological data (Kim et 

al., 2013).  They had the following channels (specific values of the maximal conductance 
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densities (mS/cm2) provided in parenthesis): transient sodium Na (27), persistent sodium 

Nap (0.142), delayed rectifier Kdr (1.5), A-type potassium (2), M-type potassium KM 

(0.6), slow AHP potassium sAHP (type A – 0.3, type C – 0.115), calcium Ca (0.55), 

hyper-polarization activated cation channel H (0.015), and leak (0.055). The channel 

densities were the same for both types except for the sAHP current for which two values 

are noted in the parenthesis. The time constant for the Ca pool was 1 sec.  The passive 

properties for both cell types was the same with Vrest = -70 mV, input resistance Rin = 141 

M and membrane time constant  =30.88 ms. 

 

Nap-KM module for adaptation/bursting properties. To design the neurocomputational 

property of adaptation and bursting, we first add the transient sodium (Nap) and the M type 

potassium (KM) as a module (known to provide this property to neurons [6]) to the normal 

‘passive’ and ‘spiking’ modules, and this is illustrated in Figure 1. An example case 

hippocampal CA3 neuron with an adapting characteristic [18] is considered to illustrate the 

procedure. The neuron also has other spiking currents transient sodium (Nat), delayed 

rectifier potassium (Kdr), hyperpolarization-activated cation current (H) and leak currents, 

which are kept fixed here. The ranges for the adjustable parameters for Nap-KM modules 

of the CA3 neuron, based on biological reports, were as follows (units for g is mS/cm2 and 

for V1/s is mV): gNap – [1*10-5, 0.005], gKM – [5*10-6, 0.017], V1/2 Nap - [-65, -35], V1/2 

KM - [-50, 0] [6]. 

 

Alternative CaS-CaT-sAHP module for adaptation/bursting properties. A second option 

to implement adaptation and busting is the set of currents that include a low-threshold Ca2+ 
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(CaS), high-threshold Ca2+ (CaT) and the calcium-activated potassium (sAHP) currents. A 

different class of the same hippocampal CA3 neuron  that exhibits the bursting 

characteristic [19] is considered for this option. Like the case above, the ranges for the 

parameters for this set of current were as follows (units for g is mS/cm2 and for V1/s is 

mV): gCaS – [1*10-5, 0.017], gCaT– [1*10-5, 0.017], gsAHP – [1*10-5, 0.008], V1/2 CaS - 

[-33], V1/2 CaT - [-27.1].  

 

Two modules for low- and high-threshold (LTO and HTO) oscillatory potentials. 

Example cases 3 and 4 consider The channels and current densities of the tonic spiker 

and adapting cell were from model LA neurons that were designed to match biological 

data (Kim et al., 2013). They had the following channels (specific values of the maximal 

conductance densities (mS/cm2) provided in parenthesis): transient sodium Na (27), 

persistent sodium Nap (0.142), delayed rectifier Kdr (1.5), A-type potassium (2), M-type 

potassium KM (0.6), slow AHP potassium sAHP (type A – 0.3, type C – 0.115), calcium 

Ca (0.55), hyper-polarization activated cation channel H (0.015), and leak (0.055). The 

channel densities were the same for both types except for the sAHP current for which two 

values are noted in the parenthesis. The time constant for the Ca pool was 1 sec. We 

found that the persistent sodium Nap and the M-type potassium and KM formed the LTO 

module, and that Ca, sAHP, KM, and Kdr currents formed the HTO module.  
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RESULTS 

Using insights related to potential grouping of currents into modules to implement function 

[20], we developed a pipeline to develop biophysical models of a large class of neurons. 

Four example cases illustrate the diversity of neurons that could be modeled as well as how 

the user can interact with the pipeline. We then illustrate how the parameter space of the 

conductances narrows with the sequential tuning of each module, providing further insights 

into the biophysics of the neuron. 

ACT pipeline to automate modeling for a large class of neurons 

We developed a pipeline to automate the biophysical modeling of single neuron using the 

Hodgkin-Huxley formulation and tested it with various examples. In brief, the proposed 

pipeline has the following structure (Fig. 2): (i) The user provides the passive and current 

injection properties, as well as any other relevant neurocomputational property of their 

neuron. And can optionally provide parameters related to morphology, and biological 

ranges for the kinetics for the various currents; (ii) The information is used to design two 

pipelines to estimate model parameters, one that uses the original current kinetics (termed 

-original) and the other using the kinetics after the activation/inactivation functions have 

been segregated [10] to modularize the currents (termed -segregated). (iii) A training 

dataset is developed for pipeline-original by sampling the conductance parameter space 

randomly within ranges (specified by the user or obtained from biology) and passing the 

parameter vector to the simulator to generate voltage traces for specified current injection 

profiles. This process is repeated until sufficiently large training samples (candidate 

parameters and voltage traces) are acquired. This training dataset is used to design 

pipeline-original, by inverting the relationship as outlined in Fig. 2, using an ML 
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architecture. We used several architectures including random forest, fully connected 

networks, and a convolutional neural network (CNN) but primarily report results from 

random forest. (iv) The same process as in the previous case is used to design pipeline-

segregated but in two-stages. In stage 1, the parameters are estimated module-by-module 

as outlined in Fig. 2 starting with coarser bounds on the parameters, and then we combine 

all the parameters in stage 2 to obtain better estimates using finer bounds. Note that each 

module uses ML architectures, including different ones as appropriate, to estimate the 

parameters related to the module. This is illustrated below via example cases. 

 

Model with segregated estimator provides better match compared to that with original 

estimator. For the statistical modeling using ML architectures, the tuning for the original 

case followed the standard approach using the training dataset for that case. For the 

segregated case, we propose a procedure involving two steps. In the first coarse tuning 

step, we tuned the maximal conductances associated with each current module separately, 

starting with the passive module, and progressing to the last module (as illustrated using 

example cases below). This provides a starting set of parameters for the maximal 

conductances (‘operating point’) for the second fine tuning step. Also, we provide ranges 

for each parameter around this set of parameters, based on experience with coarse tuning. 

This information is used to then generate a second training dataset for all conductances 

simultaneously to implement fine tuning of all the parameters.  

 

Example cases. We consider four example cases to illustrate the functioning of the 

proposed pipeline. The first two example cases represent burster cells that utilize different 
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currents to implement the bursting characteristic.  In example case 1 of a hippocampal CA1 

neuron, bursting is implemented by the Nap,Km module, while a different combination of 

currents CaS, CaT, sAHP implement bursting in a CA3 hippocampal neuron of case 2. 

Results of the hippocampal CA1 simulation are shown in Figure 3 and the Hippocampal 

CA3 in Figure 4. Example cases 3 and 4 are a tonic spiker (type C) and highly adaptive 

(type A) variants of the lateral amygdala pyramidal cells in [10]. These cell types exhibit 

oscillatory potentials of the low-threshold and high-threshold types reported in the 

literature [8; 21].  Comparison of results for the tonic spiker are shown in Figure 5, and the 

highly adaptive cell is shown in Figure 6. Using the passive properties provided by the 

user, the following cellular parameters are determined for pipeline-segregated: Eleak = Vrest; 

Gleak = 1/Rin; C = /Rin. The same values are also used for the pipeline-original, except for 

Eleak since it is a function of the activation functions in this case. In case the H current is 

present, the equations for the segregated case are modified to the following: Gleak and C 

using the same equations. However, Eleak is obtained by solving the nonlinear equation Vrest 

+ mH (Vrest) = Gleak*Eleak + GH*EH. 

 

Comparison of the performance of the automated scheme in matching passive properties 

and F-I curve for the tonic spiker and adapting cell types with 9 conductances is shown in 

Table 1. Also shown is the error in conductance parameters which were available since 

we used known model cells as the ‘user’ data in these cases. The segregated model 

outperformed the original one for both cell types. For the tonic spiker cell which 

exhibited adaptation and had numerous conductances, with much lower errors in passive 

properties and in the estimation of parameter values. 
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Permissible conductance space for neurons. The step-by-step addition of modules and 

tuning the conductances permit the evaluation of the process by which the conductance 

space is narrowed by each of the neurocomputational properties. Considering the example 

case of burster-1, we have a 4-dimensional 4-D) space of maximal conductances of the Nap, 

KM, Nat and Kdr currents. We tune all the conductances simultaneously since they are all 

interacting and share the same ‘zone’ of segregation, to the right of the passive module. 

Fig. X shows the convergence of tuning process. Next we consider the LA-A cell which 

has several modules, to illustrate the process module by module. In this case, we tune the 

LTO module, after the passive one, and then move on to the spiking/adapting module and 

then to the HTO module. Fig. X shows how the conductance space narrows after each 

module is tuned.  

 

Two current modules enable incorporation of additional neurocomputational 

properties  

We extended the results in our previous paper by explicitly designing the passive module 

for a single compartment model using the biological data, as follows: Given Vrest, time 

constant m, and input resistance Rin, we set the reversal potential of leak current as Eleak = 

Vrest, maximal conductance of leak channel as Gleak = 1/ Rin, and membrane capacitance Cm 

= m/Rin. If the H-current is present, these equations are modified as follows: We use the 

same procedure equations for Gleak  and Cm, and for Eleak, we solve the nonlinear equation 

iteratively to find a solution for Vrest and Eleak simultaneously using the equation Vrest + 

mH(Vrest) = Gleak * Eleak + GH*EH, where m is the activation function for the H channel, and 

the other terms as defined in earlier sections. 
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Nap-KM module. This module adds the neurocomputational property of adaptation and 

bursting, depending on the parameters of the two currents. Both channels can be segregated 

up to ~-60 mV in this model. Optimizing the parameters after implementing the segregation 

(Fig. 1) resulted in the following parameter set that provided the adapting characteristic 

shown in Fig. 2A that matches the biological current injection (Fig. 2C) response in [6] 

well: gNap =0.0005, gKM = 0.017, V1/2 Nap = -48, V1/2 KM = 35.   

Adaptation happens when KM current builds up enough to counteract the Nap current. The 

time constant of KM controls the duration of the initial high frequency of the adapting 

characteristic. On the other hand, increasing gKM and gNap together (~0.17 and 0.001, 

respectively) shuts off spiking and results in a bursting characteristic. Importantly, without 

such a segregation of the current modules, it was very difficult to hand-tune the parameters 

due to the interactions between the currents. Such interaction effects resulted in changes to 

spiking properties affecting passive properties, and so on. This makes the tuning process 

very difficult, for both hand- and automated-tuning scenarios [10]. This neuron becomes 

an endogenous spiker if segregation is not implemented (Fig. 2B). 

 

CaS-CaT-sAHP module. This second option to add adaptation/bursting involves three 

currents. CaS is segregated at -64 mV; CaT and sAHP remain unsegregated (Fig. 3A). The 

parameter set after implementing the segregation scheme (Fig. 3A) and tuning are as 

follows:  gCaS =0.00425, gCaT =0.001, gsAHP = 0.005. These resulted in a bursting 

profile. Without segregation, the CaS-CaT-sAHP module will offset Vrest by around 

0.3mV. Eleak can be altered to account for this change; however, altering Eleak will result 



 

109 
 

 

in a change in both inter-burst interval (IBI) and spikes per burst. Fixing this involves a 

time-consuming retuning of the cell which is less preferable compared to the alternative of 

segregating the CaS channel appropriately. Bursting is controlled in this module by tsAHP 

and tCa-pool. tsAHP can be increased or decreased largely independently to increase or 

decrease, respectively, the number of spikes per burst. Similarly, tCa-pool can be increased 

or decreased almost independently to increase or decrease, respectively, the inter-best 

interval.  

 

Some interesting neural dynamic characteristics for the Nap-KM and CaS-CaT-sAHP 

modules were as follows (Fig. 3B): (i) the ranges of IBI for the Nap-KM module are set by 

the lower/higher biological ranges for the time constant of the KM current, of 46 ms and 

120 ms, respectively. The maximum spike frequency was 125 Hz. (ii) For the CaS-CaT-

sAHP module, the minimum IBI was 120 ms, set by the minimum time constant for the 

Ca2+ pool to permit sAHP to activate. Ranges were not found to set the maximum on the 

IBI in this case. The maximum spiking frequency for this module was 77 Hz, set by the 

competing effects of CaS that raised the membrane potential to allow for faster spiking but 

also simultaneously increases activation of sAHP activation that causes inhibition. 

 

 

Model complexity and run times 

The approximate times to run each stage is highly dependent on the number of parameters 

the pipeline is trying to learn. With 6 parameters split 5 times, across 5 different amp input 

profiles we generate 5*56 (78,125) parameter sets. Each parameter is then simulated with 
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neuron for a user specified period of time (1 second by default). Without MPI 

parallelization this simulation can take anywhere from 1 hour to 4 hours on a single core 

machine. With MPI (48 cores) this takes less than 5 minutes.  

If ARIMA stats are generated for each trace as a summary statistic, this can take more than 

24 hours on a single core machine. ACT utilizes parallel processes to generate the ARIMA 

stats, and on a 48-core machine this can take roughly 4 hours. Finally, when running the 

simulation to generate the resulting parameters, selection of the machine learning algorithm 

and hyperparameters plays a big role in the time it takes to run. Using Random Forest, we 

can generate traces in less than 5 minutes (single core). Using a torch neural network, this 

can take more than an hour to train the network if the machine is not GPU enabled.  
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DISCUSSION AND CONCLUSION 

Modeling single cells with multiple neurocomputational properties poses challenges at 

both theoretical and application levels. For instance, at the theoretical level it is not clear 

how the plethora of current channels coordinate to implement the seemingly distinct neural 

signatures. At the application level, procedures to select parameters including automated 

schemes, typically result in multiple parameter sets for the same solution (e.g., [4]). 

Moreover, automated schemes such as genetic algorithm searches (e.g., [23]) cannot 

provide mechanistic insights into the interactions among the channels. We developed 

pipelines that permitted the user to interact and configure the pipeline using 

neurophysiological insights. 

 

Automated pipeline for developing biophysical models of neurons 

The segregation method with its lack of interaction among the various current modules 

makes the tuning process more efficient and facilitates automation via the machine learning 

package. Automation of the simple spiking module was shown in the Results section.  

 

The modules are designed to be flexibly configurable so that the user can be involved in 

incorporating neurophysiological as well as training insights. A neurophysiological insight 

might be having tighter bounds on some parameters, and a training insight could lead to 

reconfiguring the sequence of modules. We also note that the execution times are very 

reasonable with end-to-end run of a pipeline taking ~ 30 minutes on average for the training 

part, which could possibly be further reduced with a higher degree of parallel processing. 

 



 

112 
 

 

Insights into features of modules that implement spike-frequency adaptation and 

bursting 

The neurocomputational property of spike frequency adaptation and bursting was 

implemented via two known current modules, the distinct characteristics of which are 

highlighted by our approach. Parameters of the Nap-KM module was found to have several 

functional implications. Time constant tNap was found to be restricted to a small range 

suggesting that it might not vary much, and this time constant controls the rapid response 

of the burst. The initial high frequency of the burst was controlled by gNap. The time 

constant tKM controlled the duration of the burst and its conductance gKM controlled spikes 

per burst. In the two-current module, gNap and gKM together controlled the frequency of the 

burst. And gKM and tKM together controlled the duration of the burst and the inter-burst 

interval. This made it difficult to independently set both burst duration and inter-burst 

interval with the Nap-KM module, suggesting that it may be better suited primarily for the 

adaptation characteristic. On the other hand, the CaS-CaT-sAHP module had additional 

degrees of freedom which made it possible to independently vary both burst duration and 

inter-burst interval. However, the Nap-KM module seems to allow for a faster burst spiking 

profile than the CaS-CaT-sAHP module which may mean it is necessary in cells that 

display this characteristic. 

 

Also, the analysis suggests user tuning guidelines for the Nap-KM module as follows: 

increasing tKM and gKM increases inter-burst interval; an increase in gNap increases the 

spike frequency; number of spikes per burst can be increased by increasing gNap, 

increasing t_KM, or decreasing gKM with the latter being the least effective. Similar 
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guidelines for tuning the CaS-CaT-sAHP module are as follows: increasing t_Ca2+pool 

and t_sAHP increase IBI; spike frequency can be increased by gCaS; spikes per burst can 

be increased by decreasing gCaT or gsAHP, or by increase t_sAHP. 

 

As expected with an evolving field with dynamics and parametric features still being 

understood, questions have been raised whether detailed realistic modeling of single 

neurons is indeed realistic  [24]. Such questions are also suitable for study using machine 

learning models. Indeed, a recent study found that up to 8 layers are required in a deep 

neural network to faithfully represent a morphologically complex neuron [25], illustrating 

the complexity in the modeling process. We tried a recently reported machine learning 

scheme that includes Bayesian and fully connected neural network modules (simulation-

based inference, sbi; [14]) to estimate all parameters simultaneously but were unsuccessful 

possibly due to the large set of parameters and/or the complexity of the dynamic 

interactions, and existence of multiple solutions. As we have shown, incorporating neural 

insights into the pipeline via the segregation technique, and adopting a two-stage estimation 

procedure is capable of developing neuron models that exhibit diverse dynamics ranging 

from tonic spiking and adaptation to low- and high- threshold oscillatory potentials. The 

next steps are to extend the pipeline to semi-automatically design neuron models with 2-5 

compartments, and then to morphologically detailed models with over 1000 compartments.  

 

Future Work 

To further improve prediction accuracy of the pipeline may be beneficial or necessary to 

allow for some parameters to have a higher level of resolution than others when generating 
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the initial training data. Currently, all parameters are split equally, regardless of 

importance, difference in output, or absolute conductance space. For example, the spiking 

dynamics are highly responsive to Na and sAHP conductance changes, a higher resolution 

in the conductance values for these two channels would ensure these dynamics are 

captured. Improvements to developer and user experience will be necessary for general 

adoption. This includes automated testing, detailed usage documentation, advertising, and 

refactoring to include additional utility scripts. 

 

Considering more complex morphology, i.e., cells with 2-5 compartments, and 

morphologically realistic ones with over 1000 compartments would be another fruitful 

direction to pursue. Data are beginning to emerge on the morphological details, 

conductance distributions, and other properties of such cells that affect the function of 

synaptic integration. 
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Table titles 

 

Table 1. Comparison of errors (%) between the original and proposed modeling schemes 

 

Table 2. Parameter values of estimated current channel parameters for the four example 

cases 

 

Table 3. Kinetics of the currents in the various example cases 

 

 

 

 

Figure titles   

 

Figure 1. Cartoon illustrating segregation of currents into three modules – passive (H), 
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Figure 4. Comparisons between predicted models from the two pipelines for example case 

2 (Burster-2) with 5 channels – Leak, CaS, CaT, sAHP, Nat, Kdr 

 

Figure 5. Comparisons between predicted models from the two pipelines for example case 

3 (tonic spiker with oscillatory potentials) – type C pyramidal neuron in the rodent lateral 

amygdala  

 

Figure 6. Comparisons between predicted models from the two pipelines for example case 

3 (highly adaptive cell with oscillatory potentials) – type A pyramidal neuron in the rodent 
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Box 1. Implementation of the segregation hypothesis for automated modeling (updated from [10]) 

User input: Cell type, morphology; neurocomputational properties of interest, e.g., passive properties, 

current injection responses, oscillatory potentials; known currents; known ranges of parameters 

Biological data: If not provided by the user, find the ranges of parameters for each current channel, e.g., 

maximal conductance, activation/ inactivation functions (see Fig. 1) from biological ranges (e.g., Fig 2.21 

in [6], and other sources).  

Zones of operation for current modules: The gating kinetics may be available as experimental or 

mathematical curves. Using a plot of the activation functions of the currents as a function of voltage, 

estimate the zones of operation for each neuronal signature, to minimize overlap. For instance, the passive 

module (leak and H) is shown in the area shaded blue in Fig. 1, below the right edge of the blue area. The 

bursting module currents (Nap and KM ) activate to the right of the blue area, followed by the spiking 

module (Nat and Kdr) that activate further to the right as indicated in Fig. 1. The activation functions for 

currents within the module start at the beginning of the zone for that module. Activation functions of the 

Boltzmann type will require reshaping the ‘tails’ (shown as dashed lines in Fig. 1) to avoid overlap. In this 

case we set the value in the dashed region to 0 to avoid overlap. Alternatively, the user can reshape the 

function to the right to have a smoother rather than abrupt drop as detailed in [10]. Experimental activation 

curves typically have such sharp cut off already and so these or similar mathematical curves can be used 

directly. The parameters half-activation voltage V1/2 and slope k for each current are then restricted to these 

ranges, defining their parameter spaces. 

Selecting the parameters. With the information above, a semi-automated modeling approach can search 

over the parameter space of activation kinetics (V1/2 and k) and maximal conductance densities or can fix 

the activation kinetics (as typically performed and done in the present paper) and search only over the space 

of maximal conductance densities. As a more efficient alternative reported in the present paper, an 

automated pipeline tunes the segregated modules sequentially, starting with the one furthermost to the left 

on the voltage axis, and then progresses (right) to more depolarized levels. For instance, in the example 

case provided in the present paper of an LA neuron, the approach would follow the sequence: passive 

module, LTO module, spiking/adaptation module, and HTO module. The procedure has built-in flexibility 

for the user including decide on the sequence of the modules, select individual ranges for each parameter, 

and also specify different weighting of the errors for the loss function of each module. 

 

 

 

 
Table 1. Comparison of errors (%) between user data and predictive model developed using original and 

segregated pipelines 
 

Cell/Properties Error in passive properties (%) 

     Original                       Segregated 

Error in F-I 

curve 

Orig.         Seg. 

Other properties – 

LTO/HTO 

 Original        Segregated 

 Vrest, Rin, Tau                 Vrest, Rin, Tau   

1. Hipp Burster-1 -2.04%, 4.17%, -16.57%         0,0,0 6.4            2.4  N/A                   N/A 

2. Hipp Burster-2 11.36%, -64.98%, -67.78        0,0,0 7.2            2.0  N/A                   N/A 

3. Amygdala spiker -0.47%, -34.78%, -41.06         0,0,0 5.4            2.4 Absent            Present 

4. Amygdala adaptive 0.91%,   -44.68%,   48.83        0,0,0 1.6            1.6 Absent            Present 
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 Table 2.  Parameter values of estimated current channel parameters for the four example cases

 

Example 

case 1 

Burster - 1 

 
Example 

case 2 

Burster - 2 

 
Example case 3 

Tonic spiker with 4 

properties 

 
Example case 4 

Adapting with 4 

properties 

V-rest (mv) -75  -49  -70  -70 

Input 

Resistance 

(MΩ) 

260  90  141  141 

Time Const. 

(ms) 
102  43  31  31 

Cm (µF/cm2) 2.5   1   2.5   2.5 

Ra (Ωcm) 200   35.4   200   200 

Conductance 

(S/cm2) 
       

gNabar 0.03  0.13  0.03  0.03 

gKdrbar 0.028  0.01  0.009  0.03 

gLeak 3.5E-05  4.0E-05  4.0E-05  3.5E-05 

gNapbar 0.0003  --  0.00014  0.0003 

gHdbar --  --  2.3E-05  2.3E-05 

gCabar --  --  7.0E-5  6.0E-5 

gMbar 0.0033  --  0.001  0.002 

gsAHPbar --  --  0.00025  0.009 

gKapbar --  0.17  0.000843  0.000843 

gNat --  --  --  -- 

gKCabar --  0.02  --  -- 

gCasbar --  0.01  --  -- 

gCatbar --  0.005  --  -- 

gCal --   --   --   -- 
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Table 3. Kinetics of the currents in the various example cases 

Curre

nt 

Gating 

Variabl

e 

α β 𝒙∞ τx (ms) 

INa
1
 

p=3 
−0.4(𝑉 + 30)

exp[−(𝑉 + 30)/7.2] − 1 
 

0.124(𝑉 + 30)

exp[(𝑉 + 30)/7.2] − 1 
 

𝛼

𝛼 + 𝛽
 

0.6156

𝛼 + 𝛽
 

q=1 
−0.03(𝑉 + 45)

exp[−(𝑉 + 45)/1.5] − 1 
 

0.01(𝑉 + 45)

exp[(𝑉 + 45)/1.5] − 1 
 

1

exp[(𝑉 + 50)/4] + 1
 

0.6156

𝛼 + 𝛽
 

IKdr
1
 

p=1 exp[−0.1144(V + 15)] exp[−0.0801(V + 15)] 
1

exp[(−𝑉 − 15)/11] + 1
 

50 ∗ 𝛽

1 + 𝛼
 

IH
2

 

q=1 exp[0.0832(V + 75)] exp[0.0333(𝑉 + 75)] 
1

exp[(𝑉 + 81)/8] + 1
 

𝛽

0.0081(1 + 𝛼)
 

IKM
3
 

p=2 
0.016

exp[−(𝑉 + 52.7)/23] 
 

 

0.016

exp[(𝑉 + 52.7)/18.8] 
 

1

exp[(−𝑉 − 52.7)/10.3] + 1
 

1

𝛼 + 𝛽
 

ICa
3
 

p=2 ― ― 
1

exp[(−𝑉 − 30)/11] + 1
 

2.5

exp [
−(𝑉 + 37.1)

32.3 ] + exp [
(𝑉 + 37.1)

32.3 ]
 

q=1 ― ― 
1

exp[(𝑉 + 12.6)/18.9] + 1
 420

 

INap
4 p=1 ―

 

―

 

1

exp[(−𝑉 − 48)/5] + 1
 2.5 + 14 ∗ exp[−|𝑉 + 40|/10] 

IsAHP
3
 

p=1 
0.0048

exp[−5 log10([𝐶𝑎]𝑖2) − 17.5]
 

0.012

exp[2 log10([𝐶𝑎]𝑖2) + 20]
 

𝛼

𝛼 + 𝛽
 48 

INa1.2
5 

p=3 
−0.182(𝑉 + 30)

exp[−(𝑉 + 30)/7] − 1 
 

0.124(𝑉 + 30)

exp[(𝑉 + 30)/7] − 1 
 

𝛼

𝛼 + 𝛽
 

1

𝛼 + 𝛽
 

q=1 
−0.024(𝑉 + 50)

exp[−(𝑉 + 50)/5] − 1 
 

0.0091(𝑉 + 75)

exp[(𝑉 + 75)/5] − 1 
 

1

exp[(𝑉 + 72)/6.2] + 1
 

1

𝛼 + 𝛽
 

INa1.6
5 

p=3 
−0.182(𝑉 + 43)

exp[−(𝑉 + 30)/6] − 1 
 

0.124(𝑉 + 43)

exp[(𝑉 + 30)/6] − 1 
 

𝛼

𝛼 + 𝛽
 

1

𝛼 + 𝛽
 

q=1 
−0.024(𝑉 + 50)

exp[−(𝑉 + 50)/5] − 1 
 

0.0091(𝑉 + 75)

exp[(𝑉 + 75)/5] − 1 
 

1

exp[(𝑉 + 72)/6.2] + 1
 

1

𝛼 + 𝛽
 

INaT
6 

p=3 
𝑅𝑎(𝑉 + 15)

1 −  exp[−(𝑉 + 15)/7.2]
 

𝑅𝑏(−𝑉 − 15)

1 −  exp[−(−𝑉 − 15)/7.2]
 

𝛼

𝛼 + 𝛽
 

1

𝛼 + 𝛽
 

q=1 
𝑅𝑑(𝑉 + 30)

1 −  exp[−(𝑉 + 30)/1.5]
 

𝑅𝑔(−𝑉 − 30)

1 −  exp[−(−𝑉 − 30)/1.5]
 1 +  

1

exp[(𝑉 + 35)/4]
 

1

𝛼 + 𝛽
 

ICaL
6 p=2 

15.69(−𝑉 + 81.5)

exp[−(𝑉 + 81.5)/10] − 1 
 0.29 ∗  exp[−

𝑉

10.86
] 

𝛼

𝛼 + 𝛽
 

1

𝛼 + 𝛽
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Figure 1. Cartoon illustrating segregation of currents into three modules for example case 1 of burster 

neuron – passive (leak, H), adapting/ bursting (Nap, KM) and Spiking (Nat, Kdr) 
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Figure 2. Schematic of the two ACT prediction pipelines. The first pipeline has only one stage of tuning and 

is represented in the top part of the figure. With user input about the cellular characteristics, a complete set 

of features for the model cell is assembled by supplementing user input from a library (see box titled 

‘Database’). This is fed to the simulator which then randomly selects parameters and generated training data 

for the full cell model and produces the estimator-original which uses the ML model to predict the parameters 

given the voltage traces (see methods). The second pipeline performs the prediction of neuronal parameters 

in two stages: in stage 1, a coarse prediction of parameters is done module by module, starting with the 

passive, spiking, etc. modules, and the stage 1 predictions are assembled to then predict all the parameters in 

stage 2 which implements fine tuning. The parameters are then used to develop the model of the neuron in 

the software preferred by the user. 
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 Burster-1 Original Burster-1 Segregated 

Spiking 

with 

Bursting 

  

FI Curve 

  
Figure 3. Comparisons between predicted models from the two pipelines for example case 

1 (Burster-1) with 5 channels – leak, Nap, KM, Nat, Kdr.  

 Burster-2 Original Burster-2 Segregated 

Spiking 

with 

Bursting 

  

FI Curve 

  
Figure 4. Comparisons between predicted models from the two pipelines for example 

case 2 (Burster-2) with 6 channels – Leak, CaS, CaT, sAHP, Nat, Kdr.  

 

 

 

 



 

123 
 

 

 LA C Original LA C Segregated 

Spiking 

  

FI Curve 

  

LTO 

  

HTO 

  
 

Figure 5. Comparisons between predicted models from the two pipelines for example case 

3 (tonic spiker with oscillatory potentials) – type C pyramidal neuron in the rodent lateral 

amygdala. 
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 LA A Original LA A Segregated 

Spiking 

  

FI Curve 

  

LTO 

  

HTO 

  

 

Figure 6. Comparisons between predicted models from the two pipelines, for example case 

4 (highly adaptive cell with oscillatory potentials) – type A pyramidal neuron in the rodent 

lateral amygdala. 
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CHAPTER 5 − SUMMARY, CONTRIBUTIONS, AND FUTURE 

WORK 

SUMMARY 

Here we have presented three studies that demonstrate the utility of modeling in both the 

machine learning and computational neuroscience spaces to address hypotheses in several 

systems at various levels of detail.  

CHAPTER 2 

In Chapter 2, our results point to modifiable prescribing behavior as the key contributor 

to OUD. Replication in other healthcare systems is needed and comparisons to data 

driven models warranted. Overall, results hold promise that machine learning models can 

reasonably predict OUD and could be incorporated in the electronic health record as a 

clinical decision aid. 

Future work: 

• Further research is needed to compare the utility of predictive algorithms that are 

completely data driven and those that are developed with user input. 

CHAPTER 3 

In Chapter 3, we developed a biophysical model of the rodent amygdala to explore the 

genesis of the theta rhythm. 

We show that GABAergic VP/SI input should strengthen the theta-range oscillatory 

power albeit sufficient network resonance arising from thalamic/cortical and BF 

cholinergic input. However, when these excitatory inputs fail to produce theta-genesis, 

GABAergic afferents may provide no additional effect. Intrinsic oscillatory mechanisms 

in the model included the PN-SOM+ and PN-CR+ cell loops. Our results show that this 
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mechanism is indeed capable of increasing power in the theta range as reflected in the 

PSD plot of the LFP. While cholinergic modulation is thought to further strengthen 

resonance in these cell loops and contribute to the theta-frequency oscillation in the BLA, 

the extrinsic GABAergic projection from VP/SI provides an independent, possibly 

overarching resonant mechanism. Although there should be sufficient resonance in the 

network arising from non-rhythmic thalamic/cortical and modulatory cholinergic input, 

GABAergic VP/SI input should strengthen the theta-range oscillatory power.  

However, when these non-rhythmic excitatory inputs fail to produce theta-genesis in the 

BLA, GABAergic afferents may provide no additional effect, as in the hippocampus. 

Future work: 

• The present network contained 1000 cells, which was scaled down from the 

estimated 27,000 in the BLA. By scaling the network up, the assertions made can 

be further validated. 

CHAPTER 4 

In Chapter 4, we developed and utilized the Automated Cell Tuner (ACT). 

Future work: 

• Additional improvements to the pipeline should increase predictive ability. 

Improvements could include changing the training data resolution on a per-

conductance basis, implementing additional machine learning algorithms or 

extracting other summary features. 

• Development for this software is ongoing and will be supported for the 

foreseeable future. 
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