
CNN-Fold: Protein Fold Recognition by Deep Convolutional Neural Networks

A Project

Presented to

The Faculty of the Graduate School

At the University of Missouri

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

TYLER BANKS

Dr. Jianlin Cheng, Advisor

MAY 2016

The undersigned, appointed by the dean of the Graduate School, have examined the project
entitled

CNN-FOLD: PROTEIN FOLD RECOGNITION BY DEEP CONVOLUTIONAL NEURAL NETWORKS

Presented by Tyler Banks

A candidate for the degree of

Master of Science

And hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Jianlin Cheng

Dr. Rohit Chadha

Dr. Jeffrey Uhlmann

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Jianlin Cheng and Jie Hou for their help in

completing this project. Dr. Cheng suggested this topic as an outlet for my interest in machine

learning and biology; this project could not have been more fun and rewarding to research. Jie

was an invaluable resource and friend. Jie's motivation, teaching and help made this project

possible in the end. Thank you both. I would also like to thank Dr. Chadha and Dr. Uhlmann for

taking time to be on my project committee.

-Tyler Banks

CNN-Fold: Protein Fold Recognition by Deep Convolutional Neural

Networks

By Tyler Banks

For Master of Science, Computer Science

University of Missouri – Columbia 2016

Advisor: Dr. Jianlin Cheng

Abstract:

This paper's findings and methodologies are heavily based on the work by

Taeho et al. in their paper entitled “Improving Protein Fold Recognition by Deep

Learning Networks.” [1]. This paper and its proposed experiment tests the efficacy of

Deep Convolution Neural Networks (DCNNs) in the binary protein classification

problem. This builds on the knowledge and techniques used by Taeho and Hou et al.

[1] and uses it as a control and guide; comparing conventional deep learning neural

networks (DLNNs) to deep convolution neural networks. This project will also explore

and employ various deep neural network and convolution neural network specific

optimization techniques, including the Dropout method [2], network architecture

adjustments, and various methods of data preprocessing. Convolution Neural

networks have gained a lot of attention in recent years, and have been proven to be

extremely effective in image recognition tasks. In a recent paper by Ciresan, CNNs

achieved a remarkable 0.23% error rate on the MNIST character dataset [3]. The

CNN's success is attributed to its biologically inspiration of receptive fields in the

visual cortex. In the brain, inputs are mapped to higher layers of neurons that are

receptive to particular overlapping patterns of input, such as lines or shapes.

Similarly, CNNs use a technique called filtering where a smaller matrix is slid, in

stride, over the input matrix and the convolution of the two is taken to produce an

activation matrix. This activation matrix can then be passed on to higher layers of the

neural network to be processed further and classified. We propose that this may

provide an advantage in protein classification if the input can be considered with

regard to surrounding data points. The dataset that will be fed into the Deep CNN will

be the same dataset used in "Improving Protein Fold Recognition by Deep Learning

Networks." It consists of 951,600 protein pairs, based on 976 proteins carefully

selected SCOP 1.37 dataset. Each protein pairing produces an 84 point comparison

vector. Because Convolution Networks have been well suited to matrix based image

recognition problems in the past it is a possibility that the vector based input may

insufficient. If this is the case, other forms of input like the protein distance matrix

may be considered and discussed. While this problem has been attacked from many

different angles in the past, we are optimistic that Deep CNNs will provide

comparable and possibly better results, based on its prior successes.

Contents

Chapter-1 Introduction...7

1.1 Introduction to Background..7

1.2 Introduction to CNN-Fold...8

Chapter-2 Methods...11

2.1 Dataset and Input Features..11

2.2 Deep Convolutional Neural Networks (DCNN)...11

2.2.1 Convolutional Layers..13

2.2.2 Downsampling Layers...16

2.2.3 Dense Layers...18

2.3 Dropout Technique..19

Chapter-3 Models and Results...21

3.1 Model..21

3.1.1 Optimal Network Selection...22

3.2 Results and Comparison..22

Chapter-4 CNN-Fold...23

4.1 CNN-Fold Program...23

4.2 CNN-Fold Usage...23

4.3 CNN-Fold Help...25

Chapter-5 Conclusion and Future Work..26

5.1 Conclusion...26

5.2 Future Work...26

Chapter-6 References...27

List of Figures:

1. Convolutional Neural Network Layer.....………………………………………………….....…12

2. CNN Local Connectivity.................……...………………………..……….……………………..14

3. Downsampling..17

4. Convolutional Network with Classifiers..17

5. Dropout Technique...20

6. Convolution on our Dataset Example...21

List of Tables:

1. Network Models...22

2. CNN-Fold Recognition Rates...23

3. Fold Recognition Comparison...23

Chapter-1 Introduction

1.1 Introduction to Background

A protein's three-dimensional structure largely determines its function,

therefore predicting a protein's tertiary structure is of great interest to many

disciplines of biology and medicine alike. Protein prediction has lead to great

advances in biotechnology and drug discovery [2] in recent years. However, present

methodologies such as X-Ray Crystallography, and NMR Spectroscopy are too slow or

too expensive to keep up with the widening gap of known protein sequences to

known protein structures. Thus new methods of protein prediction are developed

every day in an attempt to tackle this growing problem.

Many methods for protein recognition have been developed, including X-Ray

Crystallography [4, 5, 6] and NMR Spectroscopy [7, 8, 9]. Both of these approaches

have been able to provide some relief in the expanding gap, but even more

significant to this paper is the methods provided by Machine learning.

Machine learning methods are data-driven methods that learn a function from

the input data representing the protein's structure. This method is free from physical

constraints presented in historical methodologies. The data driven nature of the

protein recognition makes machine learning an excellent candidate to solve this

problem, especially with the wide variety of machine learning methods already

available today.

Machine learning has been used in the past to solve this exact same problem.

Ding [10] uses Support Vector Machines (SVMs) to classify proteins. Ding was able to

achieve convergence quickly and classify proteins with an error rate of less than 50%

Taeho and Hou, et al.[1] used Deep Learning Neural Networks were used to achieve a

remarkably high recognition rate of 84.5%. Several network architectures were tested

and trained to provide the best possible outcome.

The purpose of this project is to focus and expand on the DN-Fold paper, by

utilizing the same dataset and applying a Convolutional Neural Network strategy. We

hope to determine if the dataset used in the DN-Fold paper is applicable to

convolutional networks, and if it is, how well convolutional network perform in the

protein recognition problem. We developed and utilized a new deep learning

machine learning tool, CNN-Fold (Convolutional Neural Network for protein Fold

recognition), to predict the tertiary protein structure based on the protein's primary

structure. This tool utilizes some of the most recent developments in the machine

learning field, including the dropout technique.

1.2 Introduction to CNN-Fold

Deep learning networks are nearly identical to traditional neural network

architectures in that they consist of layers, containing node neurons that are all fully

connected to other neurons in adjacent layers. The difference is the number of layers

contained in the network the way the network types are trained to learn input data.

Deep learning neural networks biggest advantage is the depth of the network. The

introduction of additional layers allows for deeper layers to represent more abstract

concepts, allowing for better classification of input data. Such a sophisticated and

successful[11] machine learning technique is not without problems, however. With

the introduction of additional layers as compared to the traditional 3 layer neural

network, we run into the vanishing gradient problem, where the back-propagation of

error starts to diminish as the layers increase. Traditional neural networks employ a

variant of un-supervised stochastic gradient decent or convergence methods to

maximize the likelihood of input data. This does not work well for anything many

layers and extremely small error rates being back-propogated. This is where deep

learning networks come in, as they are defined by their ability to combat this

vanishing gradient problem and push past the traditional 3 layer architecture. They

accomplish this through the application of unsupervised learning methods[12];

Pretraining the weights between layers individually through unlabeled data can help

tune the parameters in advance in order to capture the most information in the

original data space. This allows for back-propagated updates to remain minimal and

reach the beginning of the network without disappearing.

In this project a special kind of Deep Learning technique was utilized. The

model was developed using convolutional layers to achieve input recognition.

Typically, convolutional neural networks are used to classify images because of their

superior ability of make generalizations about local information. [13] A convolution

can be intuitively illustrated as a simple comparison problem. A small filter is slid over

an input space, or image, and at each step a snapshot is taken. Steps at which the

filter window matches the input the most return a higher value than those that

match poorly. Mathematically, this is the integral of the product of two functions. A

convolutional layer produces a feature map based on the filter's parameters (kernel,

stride). This feature map is the collection of snapshots. It then classifies the feature

map at higher network layers.

We expected convolutional networks to exhibit similar or better results than

standard deep learning networks due to several advantages provided by the

convolutional technique. Conveniently, convolutional layers are similar to standard

neural network layers in that data is fed forward through the network and trained via

back-propagation, as such there is little to no additional cost for this additional

benefit.

We expect that the use of convolutional neural networks will also provide a

method to improve the speed at which we can classify protein folds. The advantage

of windowing provided by a convolutional layer to downsize the input while retaining

much of the information as possible will hopefully provide the speed up without a

loss of accuracy.

Conversely, there is a possibility that there may be no improvement to fold

recognition accuracy, it may even prove to be detrimental. Convolutional networks

derive their befit from assumptions that can be made about the input data. We

assume that spatially, data points share weights of their local, surrounding neighbors.

This experiment will effectively determine if the Cheng dataset holds hidden spacial

properties useful to classification using convolutional networks. We will test a variety

of network architectures for effectiveness.

Chapter-2 Methods

2.1 Dataset and Input Features

The dataset utilized in this project was provided by Cheng and Baldi[14], a

derivation of the original SCOP dataset, developed by Lindahl and Elofsson[15]. This

dataset is comprised of 976 protiens from the SCOP 1.37 dataset such that the

identity between any two proteins is less than 40%. By pairing each protein with

every other protein in the dataset, Cheng was able to derive 951,600 protein

pairings. To ensure that the derived dataset accurately represented the Lindahl

dataset as a whole, Cheng and Baldi compared the effectiveness of their networks

trained with their data on independent datasets. The final dataset contains 614

proteins that share the same family, 336 that share the same superfamily and 300

that share the same fold.

For each protein pairing a set of similarity features was extracted and

calculated from the LINDAHL dataset to characterize the pairing. In total 5 different

sequence alignment/protein structure prediction tools were used to derive statistics

on sequence-sequence alignment, sequence-family information, sequence-profile

alignment, profile-profile alignment and structural information. [1] The result of the

feature extraction was a set of 84 features specific to each protein pairing. In Dr.

Cheng's DN Fold paper an accuracy of 84.5% was attained on test protein pairings

using the dataset. They used Deep Belief Networks to achieve this.

2.2 Deep Convolutional Neural Networks (DCNN)

A Convolutional Neural Network (CNN) is a subset of the neural network

classification while the Deep Convolutional Neural Network (DCNN) is a subset of

deep learning algorithms or deep learning neural networks. CNNs are comprised of

neurons like a standard neural network with the key difference being the shared

weights between layers. CNNs are spatially aware to their local environment through

local connection patterns to adjacent neurons. See fig. 1.

Fig 1. Convolution neural networks exploit local connectivity in adjacent neurons.

Like traditional neural networks traditional training methods and error correction

techniques like back-propogation can be applied. In our case, using DCNNs we will

need to utilize an unsupervised learning technique to reduce the initial error of the

network to prevent the diminishing gradient problem. We will be using an

unsupervised RBM pretraining method to produce a good set of initial neural

weights. Another useful technique to improve results will be the use of the dropout

technique. This will reduce redundancy produced by early convolutional layers. To

summarize the steps in configuring and training our DCNN we will implement the

following procedure:

1. Pre-train the network using Restricted Boltzmann Machines to ensure

good initial weights

2. Back-propagate the error produced by the input data to update the

initial weights

3. Temporarily drop neurons through the course of training to prevent

overfitting

4. Cross validate the results with an independent dataset

5. Repeat on several network architectures

2.2.1 Convolutional Layers

Convolutional Networks are biologically inspired by our eyes and their

associated cortical regions in the brain. Studies on the visual cortex, like those

recorded by Hubel and Wiesel [16], have determined that patches of cells in the

striate cortex are sensitive to smaller areas of the visual field. These smaller regions

are known as receptive fields, and they cover the entirety of the visual field. The cells

in this region act as filters over the visual field and take advantage of the spatially

local correlations found in nature. For example, certain cells may respond strongly to

a black bar in a vertical orientation, while another grouping of cells may have a

preference for a black bar in a horizontal orientation. This is accomplished though

sparse connectivity of the neurons in adjacent layers. In Figure 1, it can be seen that

neurons in layer n receive their input from only a few neurons in the previous layer,

n-1. In addition to the sparse connectivity the neurons that feed into the neuron in

layer n are physically located next to each other. In this case, the neurons in layer n-1

can be represented as the original input or it's biological equivalent, the retina in an

eye. Neurons in layer n are trained to produce the strongest response to certain local

patterns, while stacking these layers together at a higher level, layer n+1 allows for

more advanced features to be learned. As an example, we can imagine layer n to

contain one neuron that responds strongly to the previously mentioned vertical bar,

and another to respond to the horizontal bar. A neuron in layer n+1 can then be

responsive to plus (+) signs in an input space while another can be responsive to a

negative (-) sign. This highly simplified explanation does not account for many

abstract concepts that can also be derived at higher layers, like absence of light or

edges.

Fig 2. Convolution neural networks exploit local connectivity in adjacent neurons.

In CNNs each receptive field or “filter” is pushed across the entire input space,

creating a feature map. As shown in Figure 2, the feature map is the result of pushing

a filter of size [1,3] across the input space, or layer n-1, in stride [1, 1]. We can think

of this mathematically as a convolution of the integral of two functions. As shown

below:

 τ

(f * g)(i) = ∫ f(τ) * g (i – τ) d τ
 0

However, for the application of convolutional networks, the input and filter are not

continuous. Therefore we must reformulate our convolution equation as as two

separate discrete functions with discrete sizes and discrete increments multiplied

together. This is mathematically shown below:

 m

(f * g)(i) – Σ g(j) * f (i – j + m / 2)
 j=1

In terms of a 1 dimensional convolution, we can name f our input and g our filter. We

can then state that f has a length of n and g has a length of m. This will ensure that

we will produce a feature map where the higher the value of each function the

higher the value of the outputted feature map. This will then produce a feature map

of size:

 f = (n – m + 1)

Furthermore we can alter the stride at which the snapshot is taken by altering

the rate at which j increases, such that we take jump by k every time, producing a

smaller kernel due to the decreased number of snapshots. This will produce a feature

map of size:

 f = (n – m + 1) / k

The effect of increasing the kernel size or stride can change the results

drastically. By increasing kernel size you effectively reduce the significance of any

individual data point. By increasing the stride you take redundancy out of the

equation. For example, a kernel size of [1, 8] and a stride of [1, 8] will create a feature

map that is 1/8th of the original size input, effectively holding 1/8th of the information

previously conveyed. By decreasing the stride in the previous example we can

reintroduce some of the lost information through redundancy; a stride of 2 will

increase the output to the feature map by a factor of 4.

The kernel and stride length are both variables of the filter matrix which in

turn produces the feature or activation matrix. So far we have only discussed the use

of a single filter matrix, it imperative to use more than one, as each filter is only

capable of learning a single function of the input. This is not dissimilar and in fact

draws it's roots, biologically, to the previously mentioned receptive fields in the visual

cortex. This is why we have many filters that pass over the data learning as many

features as possible. In our case we are looking for features that are correlated

between a subset of our 1 dimensional input. This, however, produces a direct, linear

increase to the number of output neurons in the layer, and a multiplicative

computational increase dependent on the number of neurons in the next layer. For a

set of 10 filters with a kernel size of [1, 2], stride of [1, 1] with an input of [1, 84]

would produce a staggering 830 neurons in that layer, as compared to a single filter

of 83 neurons.

2.2.2 Downsampling Layers

A technique used in convolutional networks to combat this high computational

cost of a convolutional layer is the downsampling layer, otherwise known as the

pooling layer. Pooling layers take the output of large convolutional layers and either

take the maximum, average, or a variety of other combinations. As such, pooling

layers are primarily associated with reducing computational cost. However, this does

result in a loss of data. Early testing models showed that by introducing a pooling

layer after a convolutional layer performance by 10-20% depending on the pooling

parameters. Due the input size consisting of only 84 points a pooling layer will not be

used. A max pooling example is shown in figure 3. (Provided by deeplearning4j.org)

Fig 3. An input is reduced by a factor of 4. The output of a feature map is sub-
sampled by taking the max value of the pool.

A typical convolutional neural network using pooling (sub-sampling layers) is

shown in figure 4. (Provided by deeplearning4j.org)

Fig 4. Convolution neural networks on a 2d dataset (image). The image is broken
down in to feature maps using a specified kernel size and stride, the feature map is
then sub-sampled using a pooling layer. This process is repeated and fed into a fully
connected multilayer deep neural network.

Classification is accomplished through traditional means, convolutional neural

networks make use of densely connected layers after convolutional layers, in

essence, reformat the data.

2.2.3 Dense Layers

Fully connected, deep learning neural networks are comprised of an input

layer, several hidden layers and an output layer. Deep learning networks typically go

beyond the traditional single hidden layer, giving them the ability to learn more

complex functions. Each neuron has a set of inputs provided by the previous layer,

excluding the input layer, which is a direct representation of the working data. These

inputs are run through a function like the one shown below.

 m

 oj = f (Σ wij*ai + bj)
 i=1

This can be read as: the output (o) of neuron j in the current layer is equal to the

returned value of the activation function f which takes the summation of all m

neurons output a in the previous layer multiplied by a weight, w, biased by b. The

activation function is a way of smoothing the output of many neurons into a unified

output that can be reliably read by the next layer's neurons. Activation functions

seen in neural networks typically range from -1 to 1, they can be continuous, like the

tanh function, or discrete, like the step function. The fully connected neural networks

feed the data through all the neurons and output the results from the output layer.

During the learning phase an error rate is back-propagated through the network and

the weights (w) are adjusted to learn the given input better. The error rate, or mean

squared error, is back-propagated:

 n

 MSE = 1/n Σ e (k)2

 k=1

These repeated feed-forward, feed-backward runs build a network that can

generalize an input set that can be run on data without a known output. This is what

gives neural networks their predictive ability. This project will utilize networks

consisting of 2-4 hidden layers that will be trained using this method. This feedback

technique is fundamentally flawed for errors smaller than what a computer can

handle. The way floating point numbers are implemented in a typical computer does

not allow for the network to adjust weights the the required precision. This is what

lead to the development of pretraining networks.

2.3 Dropout Technique

Similar to how convolutional layers utilize special methods to improving

calculation speed, traditional dense layers also have methods to reduce the

computational complexity of the problem. Specifically, we used the dropout

technique[17] to improve the runtime speed and reduce the chance of overfitting the

data. Dropout effectively reduces the computational cost of a single neuron to zero;

overfitting is a common problem in training neural networks and occurs when the

network has learned the training data so well it is no longer able to make broad

generalizations. The dropout technique randomly sets the output of a neuron to zero.

The effects of the dropout can be visualized in figure 5.

Fig 5. The dropout technique disables select neurons at a constant rate randomly.
This disabling is temporary, meaning that the neurons will be reset and turned back
on during the next epoch. Figure courtesy of Srivastava et. al.

The dropout technique was found to perform better in the dense layers and degrade

performance when used in convolutional layers. This is most likely attributed to the

dependency of all input neurons applied to a filter. If a filter is missing half of it's

input it will not produce a strong activation mapping, thus forwarding on incorrect

data to the next classifying layers. It is also important to note that the convolutional

layer is the input layer in all of our training networks, making it even more

unsuitable.

A standard dropout rate, that has been known to outperform other dropout

rates is 0.5 [17]. We applied this rate to all of our networks and all of their layers

except for convolutional layers and/or input layers. Empirically, the networks were

much quicker to reach a minimum and train overall.

Chapter-3 Models and Results

3.1 Model

The data tested was presented as a 1 dimensional array with a width of 84. As

such, the data can be directly read and manipulated by convolutional layers with

kernel heights and stride heights of 1. A visualization of a filter being applied over the

data can be seen below in figure 6.

Data Input

Step 1 0.1 0.2 0.5 0.62 0.12 0.52 0.23 0.12 0.99 0.04 0.72 0.41 0.55 0.24 0.11 0.12

Step 2 0.1 0.2 0.5 0.62 0.12 0.52 0.23 0.12 0.99 0.04 0.72 0.41 0.55 0.24 0.11 0.12

Step 3 0.1 0.2 0.5 0.62 0.12 0.52 0.23 0.12 0.99 0.04 0.72 0.41 0.55 0.24 0.11 0.12

Fig 6: A visualization example of a smaller version of our input. This displays a

dataset with a width of 16, a single filter (in blue), a kernel width of 2 and a stride

of 1. At each step a convolution is taken of the filter and the input to produce the

activation matrix (not shown).

The process of selecting a good neural network model with the correct kernel

size, stride width, filter number and depth is largely empirical and specific to the

problem. It's important to train and test several network architectures.

In an attempt to improve the results of what was obtained by traditional

neural networks we tried several different network architectures with varying kernel

sizes and strides, see Table 1.

Model Number Network Architecture

Model 1 C21K2S1-D100-D30-O1_30

Model 2 C21K4S1-D100-D30-O1_30

Model 3 C42K8S1-D100-D30-O1_30

Model 4 C42K2S2-D150-D35-O1_30

Model 5 C63K4S2-D150-D35-O1_30

Model 6 C63K8S2-D150-D35-O1_30

Model 7 C84K4S2-D150-D25-O1_30

Model 8 C84K8S2-D150-D25-O1_30

Model 9 C105K16S2-D150-D25-O1_30

Model 10 C105K2S2-D150-D25-O1_30

Model 11 C84K2S2-D100-D100-D30-O1_30

Table 1: A list of all network models tested to find the best architecture. The
networks are formatted as follows: Convolutional Layer (C)<number of filters>
Kernel Size (K)<width of kernel> Stride Length (S)<width of strides> - Dense, fully
connected Layer (D)<number of node nurons> - Output Layer (O)<number of
outputs>_<epochs> used to train the data.

3.1.1 Optimal Network Selection

The optimal networks were chosen by training and testing on a small random

subset of our overall dataset. We then determined the network's F1 score and ranked

the networks from best to worst and took the top 3. The F1 score is a good indicator

because it considers the precision and recall of the test. The precision is the number

of true positives divided by the number of positive results possible. The recall is a

calculation of true positives divided by the number of positives that should have

been positive. A higher F1 score means a better model. The top 3 preforming models

were then trained and tested on the full dataset provided by the DNN-Fold paper.

Those top performing networks are highlighted in Table 1.

3.2 Results and Comparison

Overall, the deep convolutional network did not perform as well as we had

hoped but did classify at a rate comparable and even better than some historical

methods. CNN-Fold's results can be seen in table 2 below.

Network
Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

C63K8S2-D150-D35-O1 25.4 51.7 3.7 66.4 4.1 46.3

C84K4S2-D150-D25-O1 33.2 56.8 8.1 67.9 15 58.5

C105K16S2-D150-D25-O1 24.1 37.8 5.6 42.4 10 36.2

Table 2: A list of all networks performance levels measured in sensitivity or
recognition success rate. Proteins with the same family are easiest to recognize,
while proteins who share the same superfamily or fold are typically more difficult
to match.

The results were inferior to what was achieved in the DN-Fold paper. In the best of

cases for the Top 5 protein folds we achieve a correct identification rate of 56.8% at

the family level, 67.9% at the superfamily level, and 58.5% at the fold level. Top 1 did

not exceed 33.2% at the family level, 8.1% at the superfamily level, and 15% at the

fold level. We can conclude that this dataset lacked a spacial property that

convolutional networks are built to take advantage of. Perhaps by reconstructing the

data convolutional networks could outperform DN-Fold. This would require

additional preprocessing of the data. For comparison to several other popular

methods and DN-Fold see Table 3.

Network
Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PSI-Blast [18] 71.2 72.3 27.4 27.9 4 4.7

THREADER [19] 49.2 58.9 10.8 24.7 14.6 37.7

CNN-FOLD 33.2 56.8 8.1 67.9 15 58.5

DN-FOLD [1] 84.5 91.2 61.5 76.5 33.6 60.7

Table 3: A list of a few previous prediction methods and their performance [1].

It's important to note that the data used has already gone through some initial

preprocessing to improve performance. Regarding the performance of CNN-Fold,

there is no label balancing in place which could hurt the overall score. This could be a

potential area for further research.

Chapter-4 CNN-Fold

4.1 CNN-Fold Program

The pre-compiled CNN-Fold program can be downloaded at:

[https://goo.gl/PGBV1E] and the source code can be found on bitbucket at:

[https://bitbucket.org/tjb1991/cnn-fold]. The program allows for you to either

define a network used in the DN-Fold paper, networks used in this paper, create your

own architecture from the command line or use a json styled network configuration

file. The help screen can be seen below.

4.2 CNN-Fold Usage

CNN-Fold usage is a two stage process: training and evaluating. First we train a

network architecture and then evaluate the network's capability. The program has

the ability to handle 4 different types of network specifications. First, a user is able to

select from a collection of pre-compiled networks based on the models given in the

DN-Fold paper. To do this, use the -dnfold <n> switch. The user is also able to select

any of the network architectures previously mentioned in this paper by using the

-cnnfold <n> switch. The final two configuration options allow the user to define their

own network architecture. The -arch <string> command takes in a string argument

that represents the network. For example, the option C30K4S1-D100-D30-O1 would

give you a Convolutional layer with 30 filters, a kernel size of 4, and a Stride of 1,

https://goo.gl/PGBV1E
https://bitbucket.org/tjb1991/cnn-fold

followed by a 100 node dense layer, 30 node dense layer and an output layer with a

single output neuron. Finally, by using the config option the user is able to specify a

json formatted network configuration file. It is important to note that by using any of

the other options a json file will be automatically created and saved to your disk. This

file can be edited and used with -config and allows for more options to be exploited.

An example training command is shown below:

By running this command a series of output logs will be displayed on the screen and

inform you on the progress of training the network. Shown below:

Next we test our network. An example usage command displaying the evaluation

method is shown below:

At the conclusion of this testing a set of output is produced, giving the user the TP,

TN, FP, FN rates as well as Accuracy, Precision, Recall, and an F1 score. Similar to

what's shown below:

Examples labeled as 0 classified by model as 0: 38582 times
Examples labeled as 0 classified by model as 1: 56221 times
Examples labeled as 1 classified by model as 0: 164 times
Examples labeled as 1 classified by model as 1: 583 times

==========================Scores==
 Accuracy: 0.4099
 Precision: 0.503
 Recall: 0.5937
 F1 Score: 0.5446
==

4.3 CNN-Fold Help

usage: cnn-fold.jar [-arch <architecture> | -cnnfold <model number> |
 -config <file> | -dnfold <model number>] [-b <n>] [-data <file>]
 [-e <n>] [-evaluate | -train] [-i <n>] [-l <n>] [-m <n>] [-param
 <file>]
 -arch <architecture> create a model from the command line, format
 should be in C30K4S1-D100-D30-O1, For
 Convolutional layer with 30 filters, Kernel
 size of 4, and Stride of 1, dense layer size
 100... Output layer size 1
 -b <n> optional batch size for the dataset
 [default:1000]
 -cnnfold <model number> load a model corresponding to the CNNFold paper
 -config <file> use given file loading a network configuration
 -data <file> use given file to train a network or test a
 trained network
 -dnfold <model number> load a model corresponding to the DN-Fold paper
 -e <n> optional epochs to run the network [default:30]
 -evaluate test the network
 -i <n> optional iterations to run the network each
 epoch [default:60]
 -l <n> optional learning rate, works with arch only
 -m <n> optional momentum, works with arch only
 -param <file> use given file loading or saving a trained
 network parameters
 -train train the network

examples:
 1a. create a trained network (-param will create a new file):
 cnn-fold.jar -train -config conf-5-8-8-1.json -data trn1.txt -param
outFileparam-5-8-8-1.bin

 1b. create a trained network using built in model (-param will create a new
file):
 cnn-fold.jar -train -dnfold 1 -data trn1.txt -param outFileparam-5-8-8-
1.bin

 2a. evaluate a trained network (-param will open a file):
 cnn-fold.jar -evaluate -config conf-5-8-8-1.json -param inFileparam-5-8-8-
1.bin -data test-all.txt

 2b. evaluate a trained network using built in model (-param will open a
file):
 cnn-fold.jar -evaluate -dnfold 1 -param inFileparam-5-8-8-1.bin -data test-
all.txt

Chapter-5 Conclusion and Future Work

5.1 Conclusion

In this project, we developed and presented a convolutional deep learning

network to predict if a given input protein pairing shared the same family,

superfamily or fold. A combination of network architectures and convolutional layers

were built, trained, and tested on the Cheng and Baldi dataset. We found that CNN-

Fold does not perform as well as the approach employed by DN-Fold. This was due to

the lack of spatial qualities presented by the dataset. There may still be hope for

CNN-Fold when applied to proteins formatted differently though.

5.2 Future Work

In the future we plan to take a look at alternate methods of conveying

information about proteins. By formatting the protein in a way that resembles an

image or sound wave perhaps Convolutional neural networks will provide favorable

performance. Additionally, we may look at methods of data normalizing in the range

of 0 – 1 to closer resemble an image. As for the CNN-Fold tool, we plan to make it a

little more general and less dependent to the 84 point dataset used. We plan to add

the ability to alter more variables of the network from the command line and make

the json file a little easier to use.

Chapter-6 References

1. Jo, Taeho, et al. "Improving Protein Fold Recognition by Deep Learning Networks."
Scientific reports 5 (2015).

2. Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from
overfitting." The Journal of Machine Learning Research 15.1 (2014): 1929-1958.

3. Ciresan, Dan, Ueli Meier, and Jürgen Schmidhuber. "Multi-column deep neural networks
for image classification." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on. IEEE, 2012.

4. Kendrew J. C., et al. (1958-03-08). "A Three-Dimensional Model of the Myoglobin
Molecule Obtained by X-Ray Analysis". Nature 181 (4610): 662–6.
Bibcode:1958Natur.181..662K. doi:10.1038/181662a0. PMID 13517261.

5. Svergun, Dmitri I., Maxim V. Petoukhov, and Michel HJ Koch. "Determination of
domain structure of proteins from X-ray solution scattering." Biophysical journal 80.6
(2001): 2946-2953.

6. Deisenhofer, Johann, et al. "X-ray structure analysis of a membrane protein complex:
electron density map at 3 Å resolution and a model of the chromophores of the
photosynthetic reaction center from Rhodopseudomonas viridis." Journal of molecular
biology 180.2 (1984): 385-398.

7. Wüthrich K (December 1990). "Protein structure determination in solution by NMR
spectroscopy". J. Biol. Chem. 265 (36): 22059–62. PMID 2266107.

8. Wüthrich K (November 2001). "The way to NMR structures of proteins". Nature
Structural & Molecular Biology 8 (11): 923–5. doi:10.1038/nsb1101-923. PMID
11685234.

9. Wüthrich, Kurt. "Nuclear Magnetic Resonance (NMR) Spectroscopy of Proteins." eLS
(2001).

10. Ding, Chris HQ, and Inna Dubchak. "Multi-class protein fold recognition using support
vector machines and neural networks." Bioinformatics 17.4 (2001): 349-358.

11. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with
deep convolutional neural networks." Advances in neural information processing systems.
2012.

12. Elman, Jeffrey L. "Learning and development in neural networks: The importance of
starting small." Cognition 48.1 (1993): 71-99.

13. LeCun, Yann, and Yoshua Bengio. "Convolutional networks for images, speech, and time
series." The handbook of brain theory and neural networks 3361.10 (1995): 1995.

14. Cheng, J. & Baldi, P. A machine learning information retrieval approach to protein fold
recognition. Bioinformatics 22, 1456–1463 (2006).

15. Lindahl, Erik, and Arne Elofsson. "Identification of related proteins on family,
superfamily and fold level." Journal of molecular biology 295.3 (2000): 613-625.

16. Hubel, David H., and Torsten N. Wiesel. "Receptive fields, binocular interaction and
functional architecture in the cat's visual cortex." The Journal of physiology 160.1 (1962):
106-154.

17. N Srivastava, G Hinton, and A Krizhevsky. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. Journal of Machine Learning Reasearch 15 2014;1929-1958.

18. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic acids research 25, 3389–3402 (1997).

19. Jones, D. T., Taylort, W. & Thornton, J. M. A new approach to protein fold recognition.
Nature 358, 86–98 (1992).

	Chapter-6 References

