

- The cardiac ganglion (CG) of the crab *Cancer Borealis* coordinates the 5 large motor cells (LCs) and 4 small endogenous pacemaker cells (SCs)¹. (Fig.1)
- accurately represent biology. The three compartments are: soma, neurite, spike-initiation zone (SIZ).
- preserved LC responses seen in experiments.
- criteria above into a network model and predict covariations among a wider parameter space, which modulate the single cell and network output.

Single Cell Model

dV	$-I_{CaT} - I_{CaS} - I_{CaS}$ $-I_{Na} - I_{Kdr} - I_{Lea}$		$I_{NaP} - I_{KA} - I_{Kd} - I_{BKKCa}$	– I _{SKKCa} – I _{Leak}
lon channel	Maximum Conductance		x_{∞} 3 <u>0.3463</u> + <u>0.75187</u> + 0.162947	$\tau_{\rm x}$ (msec)
	Density (S/cm ²)	m ⁻	$1 + 0.008685e^{-\frac{V}{5.033248}} + 1 + 1.11022e^{-\frac{V}{9.610637}}$	$3.002 + \frac{4.073}{1 + \exp((V + 24.18)/2.592)}$
CaT	0.00031	$\begin{bmatrix} I_A \\ & h \end{bmatrix}$	$\frac{0.93854475}{1} + 0.02804584$	$9.434 + \frac{11.7}{1 + \exp((V+1)/5.317)}$
CaS	0.00013		$1 + 144209.656e^{\frac{v}{5.08660603}}$	$1 + \exp((V+1)/5.317)$
CAN	0.000105	I _{CaS} m ²	$\frac{1}{1 + \exp((V + 24.75)/-5)}$	$20 + \frac{50.2}{\exp((V + 20.25)/1)}$
NaP	0.00019		$1 + \exp((v + 24.75)) - 5)$	$\exp((v + 20.23)/1)$
KA	0.0025	h	$\frac{45}{40 + [Ca^{2+}]}$	$\frac{1}{0.02}$
Kd1 (soma)	0.0009		1	3.388
Kd2 (soma)	9.00E-05	I _{CaT} m	$\frac{1}{1 + \exp((V + 20)/-1.898)}$	$\frac{18.51 - \frac{5.500}{\exp((V - 6.53)/9.736) + \exp((V + 12.39/-3))}}$
KCa	0.011	h	1	20.23+40
SKKCa	0.000879	n	$1 + \exp((V + 55.27)/6.11)$	exp((V + 23.48)/-9.976) + exp((V + 5.196))
Leak (All segments)	0.00015	$I_{\rm Kd}$ m_I	$\frac{1}{1 + \exp((V + 24.19)/-10.77)}$	$25.049 + \frac{25}{1 + \exp((V + 25.84)/6.252)}$
Na	0.5			
Kdr (SIZ)	0.22	hi	$0.3 + \frac{1 - 0.3}{1 + \exp((V + 15.87) / 5.916)}$	$550 + \frac{954.9}{\exp((V+10.8)/-15)}$
			$\frac{1}{1 + \exp((V + 23.32)/-10)}$	$100 + \frac{550}{\exp((V+15)/12.46)}$
Table.1&2 Parameters and		I _{NaP} m	$\frac{1}{1 + \exp((V + 32.7) / -18.81)}$	$3.15 + \frac{0.8464}{\exp((V + 0.8703) / -6.106)}$
equations of the r	nominal model	Ican w	$(0.0002 \ * [Ca^{2+}]^{2} / (0.0002 \ * [Ca^{2+}]^{2} + 0.05))$	$(40 / (0.0002 * [Ca^{2+}]^{2} + 0.05))$
F = Faradays constant		I _{SK(Ca)} w	$(0.0001*[Ca^{2+}]^2/(0.0001*[Ca^{2+}]^2+0.1))$	$(4 / (0.0001 * [Ca^{2+}]^{2+} - 0.1))$
R = Gas constant		a	$\frac{[Ca^{2+}]}{(1+\exp((V-15+0.08*[Ca^{2+}])/-15)*(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}])/-15))/(1+\exp((V+5+0.08*[Ca^{2+}]))/-15))/(1+\exp((V+5+0.08*[Ca^{2+}]))/-15)/(1+\exp((V+5+0.08$	$\frac{1}{(-9)^*(2+[Ca^{2+}])}$ $\frac{1}{0.4}$
V = Membrane voltage		I _{BK(Ca)}	$(1 + \exp((v - 13 + 0.06 \cdot [Ca]) / - 15)^{*}(1 + \exp((v + 5 + 0.06^{*}[Ca]) / - 15)^{*}(1 + \exp((v - 13 + 0.06^{*}[Ca]) / - 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + 15)^{*}(1 + $	
$[Ca^{2+}] = intracellular C$	alcium	b	$\frac{7}{5 + [Ca^{2+}]}$	$\frac{1}{0.2}$
concentration				

Structure of large cells in crab cardiac ganglion – a computational study

Tyler Banks², Jing Wang¹, Pranit Samarth², Daniel R Kick³, David J. Schulz³, Satish S. Nair² ¹Biological Engineering, ²Electrical and Computer Engineering, ³Biological Sciences, University of Missouri, Columbia, Missouri

S Cont.	
S/cm2 to 30e-5 S/cm2 in steps of 1e-5 S/cm2 and input resistance e (2.63-7.43 MΩ), the responses to square pulse injections (50ms 6nA) onse to a stimulus protocol (Fig.3) when clamped at -40mV was also satisfied the following conditions: e less than 120 ms, with a the peak not higher than -22mV. 7 ms, with its peak greater than -15mV. mV from its Post TEA response, and the duration should reduce to less or higher when compared to an biological response. ma from phase 1. The cells will be presented with continuous sting periodically. For each case the following items need to be	A.
JLTS	
Experiments Finite the cordings, and the lower panel lists the simulation results from the lower the soma was receiving the stimulus protocol. The biological full model, with the SIZ receiving the injection, as the biological plots rmined by the interplay of three currents in the soma: NaP, CaS and the will dominate the other two and produce a "fat" depolarization. after CaS will quickly terminate the depolarization, resulting a sharp tion can happen early enough to open CaS and then SKKCa,	gmax (S/cm ²)
stimulus protocol experiments re attached to passing single compartment somas to get 3-comp cells. criteria of # of spikes/burst, burst frequency, etc.	1
being investigated presently. Initial results in Fig. 4	J. S res doi 2 D. doi bur Ne 3 Sai Diff Jou 4 the Exp

411.09

FUTURE WORK

Finalize tuning process for viable LCs, and then automate the procedure

For this experiment viable cells were developed by incrementally adjusting parameters until they matched biological data. Once finalized, this will be automated in order to build a collection of viable cells for network implementation, similar to how the ligated soma cells were generated.

Determine covariations for "viable" LCs

There is a tremendous amount of pre-TEA variations observed in the intact network recordings, whose underlying mechanism are yet unknown. We plan to study covariations in the parameters by using this set of cells.

Fig.4 An example of an intact cell with burst intervals present

Fig.5 An example of 5 random LCs spanning across the parameter space

REFERENCES

Lane, B. J., Samarth, P., Ransdell, J. L., Nair, S. S. & Schulz, D. Synergistic plasticity of intrinsic conductance and electrical coupling stores synchrony in an intact motor network. *eLife* 5, e16879, i:10.7554/eLife.16879 (2016).

Ransdell, J. L., Temporal, S., West, N. L., Leyrer, M. L. & Schulz, J. Characterization of inward currents and channels underlying rst activity in motoneurons of crab cardiac ganglion. Journal of *surophysiology* **110**, 42 (2013).

Ransdell, J. L., Nair, S. S. & Schulz, D. J. Neurons within the ame Network Independently Achieve Conserved Output by ferentially Balancing Variable Conductance Magnitudes. The urnal of Neuroscience 33, 9950 (2013).

Cruz-Bermúdez, N. D. & Marder, E. Multiple modulators act on cardiac ganglion of the crab, Cancer borealis. Journal of *cperimental Biology* **210**, 2873 (2007).